Application of centroid and geometric mean methods for face recognition


  • Bangkit Indarmawan Nugroho STMIK YMI Tegal, Indonesia
  • Apriliani Maulidya Khasanah STMIK YMI Tegal, Indonesia
  • Zaenul Arif STMIK YMI Tegal, Indonesia
  • Gunawan Gunawan STMIK YMI Tegal, Indonesia



Centroid, Face Recognition, Geometric Mean, Grayscale, Image Processing


Face recognition is one of the most important areas in artificial intelligence and image processing, with wide applications from attendance system security to human-computer interaction. This study aims to overcome the difficulties in classifying student faces in an academic environment by applying and comparing centroid and geometric mean methods. Student face data was collected and processed through conversion to grayscale, pixel intensity normalization, and statistical analysis using both methods. The results showed that both methods had the same performance with 70% accuracy, 75% precision, 60% recall, and 66.67% F1-score. The application of this method can improve the efficiency and accuracy of attendance management and security in the campus environment, especially for institutions with limited resources.


Ab Wahab, M. N., Nazir, A., Ren, A. T. Z., Noor, M. H. M., Akbar, M. F., & Mohamed, A. S. A. (2021). Efficientnet-Lite and Hybrid CNN-KNN Implementation for Facial Expression Recognition on Raspberry Pi. IEEE Access, 9, 134065–134080.

AbdELminaam, D. S., Almansori, A. M., Taha, M., & Badr, E. (2020). A deep facial recognition system using computational intelligent algorithms. PLoS ONE, 15(12 December), 1–27.

Ali, W., Tian, W., Din, S. U., Iradukunda, D., & Khan, A. A. (2021). Classical and modern face recognition approaches: a complete review. Multimedia Tools and Applications, 80, 4825–4880.

Andrejevic, M., & Selwyn, N. (2020). Facial recognition technology in schools: critical questions and concerns. Learning, Media and Technology, 45(2), 115–128.

Bhangoo, R. S., Cheng, T. W., Petersen, M. M., Thorpe, C. S., DeWees, T. A., Anderson, J. D., Vargas, C. E., Patel, S. H., Halyard, M. Y., Schild, S. E., & Wong, W. W. (2022). Radiation recall dermatitis: A review of the literature. Seminars in Oncology, 49(2), 152–159.

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13.

Childs, J., & Lofton, R. (2021). Masking Attendance: How Education Policy Distracts from the Wicked Problem(s) of Chronic Absenteeism. Educational Policy, 35(2), 213–234.

Conde López, E. R., Toledo, M. A., & Salete Casino, E. (2022). The Centroid Method for the Calibration of a Sectorized Digital Twin of an Arch Dam. Water (Switzerland), 14(19).

Cook, J., & Ramadas, V. (2020). When to consult precision-recall curves. Stata Journal, 20(1), 131–148.

Gavriilaki, E., & Brodsky, R. A. (2020). Complementopathies and precision medicine. Journal of Clinical Investigation, 130(5), 2152–2163.

He, Y., Burghardt, K., & Lerman, K. (2020). A geometric solution to fair representations. AIES 2020 - Proceedings of the AAAI/ACM Conference on AI, Ethics, and Society, 279–285.

Ijmtst, E. (2022). The comparison of geometric design using Civil 3D software and manual method. June.

Masud, M., Muhammad, G., Alhumyani, H., Alshamrani, S. S., Cheikhrouhou, O., Ibrahim, S., & Hossain, M. S. (2020). Deep learning-based intelligent face recognition in IoT-cloud environment. Computer Communications, 152, 215–222.

Poměnková, J., & Malach, T. (2023). Optimized Classifier Learning for Face Recognition Performance Boost in Security and Surveillance Applications. Sensors, 23(15).

Smith, M., & Miller, S. (2022). The ethical application of biometric facial recognition technology. AI and Society, 37(1), 167–175.

St, H. (2022). E QUI B IND : Geometric Deep Learning for Drug Binding Structure Prediction.

Sundararaman, R., Vigil-Fowler, D., & Schwarz, K. (2022). Improving the accuracy of atomistic simulations of the electrochemical interface. Chemical Reviews, 122(12), 10651–10674.

Tian, Y. (2020). Artificial Intelligence Image Recognition Method Based on Convolutional Neural Network Algorithm. IEEE Access, 8, 125731–125744.

Townshend, R. J. L., Eismann, S., Watkins, A. M., Rangan, R., Karelina, M., Das, R., & Dror, R. O. (2021). Geometric deep learning of RNA structure. Science, 373(6558), 1047–1051.

Varshney, T., Waghmare, A. V., Singh, V. P., Ramu, M., Patnana, N., Meena, V. P., Azar, A. T., & Hameed, I. A. (2024). Investigation of rank order centroid method for optimal generation control. Scientific Reports, 14(1), 1–21.

Verschae, R., & Bugueno-Cordova, I. (2023). Event-Based Gesture and Facial Expression Recognition: A Comparative Analysis. IEEE Access, 11(October), 121269–121283.

Xiao, J., Zhang, W., & Zhong, R. Y. (2023). Blockchain-enabled cyber-physical system for construction site management: A pilot implementation. Advanced Engineering Informatics, 57, 102102.

Yadav, K. S., & Singha, J. (2020). Facial expression recognition using modified Viola-John’s algorithm and KNN classifier. Multimedia Tools and Applications, 79(19–20), 13089–13107.

Yang, H., & Han, X. (2020). Face recognition attendance system based on real-time video processing. IEEE Access, 8, 159143–159150.

Zhang, J., Yin, Z., Chen, P., & Nichele, S. (2020). Emotion recognition using multi-modal data and machine learning techniques: A tutorial and review. Information Fusion, 59(March 2019), 103–126.




How to Cite

Nugroho, B. I., Khasanah, A. M., Arif, Z., & Gunawan, G. (2024). Application of centroid and geometric mean methods for face recognition. Jurnal Mandiri IT, 13(1), 28–37.

Most read articles by the same author(s)

1 2 > >>