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 To increase the percentage of survival of citizens both in normal times 
and in times of emergency or Emergency Medical Services (EMS) 
which is one of the main pillars in a smart city, among the most 
important is ambulance management. A hybrid model between LR-
MEXCLP is a model that combines local activity estimation with the 
TIMEXCLP model by achieving maximum coverage on MEXCLP 
which then this hybrid model can lead in solving a series of ambulance 
facility placement problems more accurately. This model was 
developed by establishing an integration model between the ability to 
estimate local activity and maximum completion coverage and with 
the shortest response time, so as to create a reliable ambulance 
service in a smart city. 

Keywords: 

Allocation relocation 
Ambulance 

EMS 
Optimation 
Smart city 

 This is an open access article under the CC BY-NC license. 

 

Corresponding Author: 

Rafiqa Dewi,  
Departement of Informatics Management, 
STIKOM Tunas Bangsa Pematang Siantar,  
Jln. Jenderal Sudirman Blok A No. 1-3, Pematang Siantar, Sumatera Utara, 21111, Indonesia.. 
Email: rafiqa@amiktunasbangsa.ac.id 

 
1. INTRODUCTION 

A smart city or smart city is a city that is able to know early (has smart, preventive elements) the real 
needs of its citizens so that they can always be met / anticipated public desires through various 
applications and information technology innovations (Indrajit, 2012). Smart cities are cities that have 
used intelligent computing technology to integrate critical components of city infrastructure and 
services, such as city administration, education, health, public safety, real estate, transportation and 
other municipal needs, where the overall use must be done intelligently, interconnected and 
efficiently (Wijaya, 2018). While smart city planning based on environmentally friendly technology is 
basically a cooperation planning that involves various agencies in the planning process, for example 
through integration, dissemination of information and interaction of environmental spaces within the 
city (Hartama et al., 2017). 

Smart City will become disabled if there is no emergency medical service (EMS). One of the 
entities on an EMS is an ambulance. Ambulance is a vehicle equipped with medical equipment to 
treat patients during transportation to health institutions such as special hospitals and public hospitals 
(Karkar, 2019). Where in the context of EMS there is a decision-making process that plays a very 
important role because some decisions greatly impact the patient's health. This work focuses on the 
operational level by solving the problem of ambulance delivery and relocation. Dispatch decisions 
assign ambulances to emergencies and relocation issues decide at which base available 
ambulances should be (re)assigned. To improve effectiveness and efficiency in EMS response, an 
integrated optimization approach is proposed: mathematical models and heuristic pilot methods. The 
goal is to maximize system coverage using a time readiness measure that allows relocation to any 
base (Carvalho et al., 2019) 
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The problem that then arises in the case of ambulances in smart cities is how to use IoT to 
identify and diagnose the condition of patients, the concept of Assisted Living is used for the elderly 
who live alone who need remote health monitoring. Data from sensors installed in the home to 
monitor the person is processed and sent to the cloud via a mobile app for viewing by the person 
monitoring the patient (Abdelgawad et al., 2017; Ashmawy et al., 2019). 

In recent years search algorithms query the location of an entity quite accurately, particularly 
Taboo Search (Glover, 1989), coupled with the growth of parallel computing (Reeves, 1975) has 
given rise to a new stream of research that effectively tackles the dynamic nature of these issues. 
With the latest models and algorithms, large-scale problems can be solved quickly and dynamically 
in real time, with a high degree of accuracy. There is a lot of literature on emergency vehicle seating 
models. Survey by(Serra & Marianov, 2011) provides an overview of the most important models 
published up to that point (Brotcorne et al., 2003). 
 
2. RESEARCH METHOD 

The author introduces a hybrid model between the Local Reliability-based Maximum 
Expected Covering Location Problem (LR-MEXCLP), which is a model that combines the estimation 
of busyness in local reliability (Local Reliability) and Maximizing Expected Coverage (Maximum 
Expected Coverage) model with the TIMEXCLP model, which is a model of the location of the 
maximum expected coverage with time variation (Maximum Expected Coverage Location with Time 
Variation).  The LR-MEXCLP model allows ambulance forecasts to vary from one area to the next 
depending on the number of vehicles and the level of demand in each local area. This strategy is 
more aligned with the heterogeneous distribution of geographic demand that characterizes large 
areas of urban areas, and therefore tends to result in more effective location decisions. In addition, 
this model introduces a new system performance matrix referred to as reliability (Chuang & Lin, 
2007). 

LR-MEXCLP method hybrid model that combines local busyness estimates in the MALP 
model with the maximum coverage objective in MEXCLP 

𝑀𝐴𝑋 𝑍 =  ∑ ∑ 𝑑𝑖𝑞𝑖,𝑘𝑌𝑖,𝑘

𝑝

𝑘=1

𝑛

𝑖=1

                             (1) 

In this formulation, the objective function (9a) serves to maximize the number of request 
completions, for all nodes, of the request rate multiplied by the reliability of the coverage. That for 
each node, the specific reliability measure chosen is the one where the corresponding Yi,k value is 
set to 1(Sorensen & Church, 2010). 

While the TIMEXCLP model is very concerned about the problem of response time where a 
number of studies have shown a directly proportional relationship between decreased response time 
and the number of service deaths in EMS. This makes the exact location of the ambulance an 
important issue for EMS planners. This model provides EMS planners with a solution by carefully 
estimating service levels and allowing them to reinvent the size of the number of active vehicles that 
change over time to respond to demand variability. The model is developed and integrated with 
simulation into a Decision Support System (DSS) to help EMS planners allocate vehicles to demand 
nodes. Scheduling decision rules embedded in decision support systems for emergency ambulance 
scheduling consider criteria on average response time and percentage of ambulance requests 
responded within 15 minutes (Zhen et al., 2015).  

We remember that decisions to be made in our issues include the number and location of 
bases and ambulances. However, when drawing up such a plan, we can go further by also deciding 
how to allocate an ambulance to the point of demand in case of an emergency call. Nevertheless, 
since demand is stochastic, we can, at most, consider a two-stage decision process. In the first stage 
(here-and-now) we make decisions about the location of the bases and the number of ambulances 
to be included in each base. Then, depending on how the uncertainty is resolved (observed 
requests), we decide how to allocate ambulances to different calls. Naturally, such allocations 
depend on the observed demand (Nickel et al., 2016). 

Previous ambulance location optimization models have used a day as a unit of time in the 
model. However, analysis of Louisville data suggests that significant variations in the spatial 
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distribution of demand can occur within a single day. To capture this aspect of the demand pattern, 
the expected requests are partitioned into a two-dimensional matrix of time period T and K request 
nodes. For the size of the St vehicle fleet in time period t, the average probability of system width 
over period t randomly selected vehicles will be busy can be expressed as the ratio of expected 
service time to total available service time. The system-wide probability of a busy ambulance is an 
estimate of any ambulance that is busy if the assumption of independence is met. If we define you 
as the average service time in minutes, and m as the length of the time period t in minutes, we can 
express this probability, Pt, as: 

𝑃𝑡 =  ∑
(𝐶𝑡,𝑘)(𝑢)

𝑆𝑡(𝑚)
                                                       (1)

𝑘

 

 
Where 
u = Average service time in minutes. 
m = Minutes in period t 
 

Where the expected coverage of the stain is represented by an item of possible ambulance 
availability during that time period and the portion of demand located on that node during that 
coverage period. The complete formulation of TIMEXCLP is: 

𝑀𝑎𝑥 ∑ ∑ ∑(𝑙 −  𝑃𝑡)(𝑃𝑡
𝑗−𝑖

)(𝐷𝑡,𝑘)(𝑌𝑡,𝑗,𝑘)        (2)
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Constraint to: 

∑ 𝑌𝑡,𝑗,𝑘 =  ∑(𝑋𝑡,𝑗)(𝑎𝑡,𝑖,𝑘) ∀ 𝑘 𝑑𝑎𝑛 𝑡

𝑖

𝑆𝑡

𝑗

                    (3) 

 

∑ 𝑋𝑡,𝑖 =  𝑆𝑡

𝑖

∀ 𝑡                                                              (4) 

Where Xt,i is an integer and 

𝑎𝑡,𝑖,𝑘 =  {
1 Where Xt, i is an integer and                      
0 Other wise                                                        

  

 
In the development of objective functions, equation (2), Yt,j,k represents whether the j-th 

vehicle added to the fleet during period t includes node k. Since it is reasonable to expect that some 
nodes cannot cover other nodes, the values of Yt, i, k depend on where the j-th vehicle is located. If 
all nodes can cover each other, it makes no difference where the ambulance is. The problem is just 
one of minimizing fleet size. The system's ability to provide inter-node coverage is represented by a 
coverage matrix. The coverage matrix is then used to limit the Yt,j,k values to zero when unfeasible 
coverage alternatives are evaluated (Repede & Bernardo, 1994).  
 
3. RESULT AND DISCUSSIONS 

From the LR-MEXCLP and TIMECLP models, it can be obtained that there are three entities that can 
be integrated, namely (1) ambulance requests located in the local area, (2) an ambulance node at 
(3) a certain time. The n*3 coverage matrix is used to limit the value of Y_t,j,k to 0 when non-feasible 
coverage alternatives are evaluated. In potential locales, suppose the number of nodes of the 
location of the viable ambulance is represented by i = 1.2 .... , I.  A coverage matrix is a matrix of T * 
I * K whose elements a_t,i,k are valued at 1 if at time t, the k-vertex is covered by location i, and the 
value 0 is reverse.   This coverage matrix is an assignment representation of the maximum ability of 
network vehicle nodes to mask request nodes. Next is the estimation of local busyness by maximizing 
the number of requests for all nodes, from the request rate multiplied by the coverage reliability 
matrix. Taking into account that for each node, a specific measure of reliability is chosen: 



Jurnal Mandiri IT   ISSN 2301-8984 (Print)   ❒       69  

  

Jurnal Mandiri IT, Vol. 12 No. 2, October  (2023): pp. 66-71 

max ∑ 𝜆𝑖

𝑛

𝑖=1

𝑥𝑖
2 − ∑ ∑ 𝐷𝑡,𝑘

𝑝

𝑙=1

𝑚

𝑗=1

𝑌𝑡,𝑗,𝑘               (1) 

 
Testing is done by varying the size of the maximum number of ambulances at the node to 

the destination and the number of requests. Data on ambulance demand using the Sampling 
Approach are shown in table 1: 
 

Tabel 1. Ambulance arrival data generated from uniform distribution 

Y Node J 
Number of 

Ambulances 
Average 

Response Time 
Demand 

1 1 2 14.9 7 
2 2 3 9.1 7 
3 3 2 7.1 6 
4 4 1 10.3 6 
5 5 2 8.7 6 
6 6 1 10.8 8 
7 7 2 8.5 5 
8 8 2 9.9 5 
9 9 3 12.9 6 

10 10 2 13.8 6 
  20 10.6 62 

 
3.1. Pseudocode for Minimization Response Time  
Response time has a high level of importance to ensure patients can be evacuated in a timely manner 
thereby reducing the risk of death. The pseudocode to minimize the response time of an ambulance 
call can be written as follows: 
 
Input: Number of demand, Total of facility, speed of ambulance, Time limit, 

Distance 

Output: Average Time, Demand; 

Process : Begin 

Generate a Local Potential;  

Calculate initial distance; (using Euclidean distance equation) Calculate 

Time;  

Threshold Time less than Time limit;  

Generate set range;   

Set Max time, Demand;  

for i=1 to i<total threshold of facility  

Calculate: 

 x i = x! + rand 0 1 × x! − mutual vector ∗ BF 1 ;  

 x i + 1 = x! + rand 0 1 × x! − mutual vector ∗ BF 2 ; 
Conditions:  

 if x(i)=~0 then 

  if x(i) less than Max time then  

 Average time = x(i)  

 Demand = index x(i) break; 

end; 

else continue; 

end  

End 

 
3.2. Pseudocode for Optimization Allocation Relocation Ambulance 
In addition to response time, another important thing in the ambulance relocation allocation process 
is the optimization of the placement of the number of ambulances at one node as an ambulance 
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base. The pseudocode for ambulance allocation and relocation optimization can be written as 
follows: 
 
Input: Total of Node, Fleet Size, RT of fleet, Average Response Time, Total 

of demand, Random range, Distance, Size of Coverage; 

Output: Facility Numb. and Response Time 

Process:  

Generate set of random demand; Calculate initial distance; travel time; 

Calculating Coverage; 

Threshold Time ≤ Time limit;  

Generate neighbor set Local search;  

Set Max time, Random Demand;  

for i = 1 to i < total time limit  

Calculate mutual phase:  

Conditions:  

if ambulance (i) available then  

 if x(i) ≤ Max time; Average time = x(i); 

 Demand = index x(i)  

End 

 
3.3. Model Optimization Calculation Results 
From the calculations carried out using the algorithm on solving the minimization of response time 
and the optimization algorithm for the allocation of the number of ambulances on the base, an 
overview of the number of ambulances that have the most potential to be placed in each base is 
obtained. These results can be used as recommendations for government authorities in managing 
ambulances in the city.  
 

Table 2. Data on the number of ambulances for allocation and relocation taking into account the number of 
calls and response time 

Node J Demand 
Avg Time response 

Limit 
Local Potential 

1 7 10 10, 5, 1, 6, 9, 7 
2 7 8 1, 5, 10, 6, 9, 7, 2, 8 
3 6 12 10, 5, 1, 6, 5, 3, 7 
4 6 12 2, 5, 1, 6, 4, 7, 10 
5 6 10 3, 5, 10, 6, 1, 4, 8, 2 
6 8 10 10, 5, 3, 2, 1, 9 
7 5 8 7, 2, 5, 6, 4, 5, 3 
8 5 12 10, 6, 5, 3, 8, 5 
9 6 8 9, 8, 3, 5, 9, 2, 3, 4 
10 6 8 6, 5, 7, 8, 3, 2, 10, 1  

62 9.8 
 

 
4. CONCLUSION 

The author has developed a hybrid model to optimize the allocation relocation of ambulance 
management in smart city. The main feature of the system lies in the redeployment scenarios that 
allows city authority determine the number of ambulances for each base. The author also provides a 
number of computational approaches such pseudocode to facilitate the implementation of this model 
in the form of a decision support system (DSS) so that computational results can be showed on real 
data, and the proposed system can effectively solve real life instance in smart city. 
 Smart application design that is able to provide the hospital recommendations for patients 
as the final sequence for ambulance allocation relocation problems, even though it is one of the main 
factors to provide intelligence characteristics of an ambulance management. Although these 
technologies were not considered in this study, they will undoubtedly play a role in determining what 
system installation is recommended as a standard feature in future ambulances for future research. 
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