
Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online)
Vol. 14 No. 1, July (2025), pp. 96-103 Published by Institute of Computer Science

Journal homepage: www.ejournal.isha.or.id/index.php/Mandiri

Optimization of quicksort algorithm for real-time data
processing in IoT systems with random pivot

division and tail recursion

Firdaus Laia1, Ferdinand Tharorogo Wau2, Jonson Manurung3
1,2Computer Science, Faculty of Science and Technology, Universitas Nias Raya, Nias Selatan, Indonesia

3 Informatika, Universitas Pertahanan Republik Indonesia, Bogor, Indonesia

A R T I C L E I N F O ABSTRACT

Article history:

Received May 11, 2025
Revised Jun 28, 2025
Accepted Jul 10, 2025

Real-time data processing in Internet of Things (IoT) systems requires
efficient sorting algorithms to handle large and ever-increasing volumes
of data. The QuickSort algorithm is often used due to its speed and
efficiency, but on large pre-sorted datasets, this algorithm can
experience performance degradation due to poor pivot selection and the
use of regular recursion. This study aims to optimize the QuickSort
algorithm through random pivot selection and the application of tail
recursion to improve sorting efficiency on IoT datasets. Experiments
were conducted by comparing the standard QuickSort version and the
optimized version, using synthetic and real-time IoT datasets from
temperature and humidity sensors. Performance evaluation was based
on execution time and memory usage metrics. The results show that
QuickSort with random pivot and tail recursion can reduce execution
time by up to 27% and memory usage by up to 18% compared to the
standard QuickSort implementation. These findings indicate that the
proposed algorithm is more efficient for IoT applications that require
real-time data processing, and has the potential to be applied in
distributed data systems and parallel processing for large-scale
scenarios.

Keywords:

Internet of Things (IoT);
Random Pivot;

Real-Time Data Processing;
Tail Recursion;

QuickSort.

This is an open access article under the CC BY-NC license.

Corresponding Author:

Firdaus Laia,
Computer Science,
Faculty of Science and Technology,
Universitas Nias Raya,
Jl. Pramuka, Nari-nari, Pasar Telukdalam, 22865, Kabupaten Nias Selatan, Sumatera Utara, Indonesia
Email: firdauslaia@uniraya.ac.id

1. INTRODUCTION
In the ever-evolving digital era, the Internet of Things (IoT) has become an important pillar in the
transformation of various industrial sectors, such as healthcare, transportation, and manufacturing
(Allioui & Mourdi, 2023; Gamal et al., 2024; Sallam et al., 2023). IoT enables connectivity and data
exchange between widely dispersed physical devices, generating huge and continuous volumes of
data. To maintain the performance and effectiveness of IoT systems, real-time data processing is a
critical aspect that must be considered. One of the main challenges in IoT data processing is the
speed and efficiency of information processing, especially when dealing with large-scale and growing
data (Diène et al., 2020; Habeeb et al., 2019). Sorting algorithms are an important component of the
data processing flow, as they are often used to systematically organize, filter, and analyze
information (Durelli et al., 2019; Halder et al., 2024; Lee et al., 2014; Rao et al., 2019). Among various
sorting algorithms, QuickSort is known to be one of the most time-efficient, especially for unstructured
data and in scenarios with large amounts of data (Hua et al., 2021; Moghaddam & Moghaddam,
2022). However, although QuickSort offers good performance under general conditions, it still faces
several obstacles in its application to real-time data processing, especially in IoT systems. One of

https://iocscience.org/
https://creativecommons.org/licenses/by-nc/4.0/

Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) 

Firdaus Laia, Optimization of quicksort algorithm for real-time data processing in IoT systems with random
pivot division and tail recursion

97

the main obstacles is the reliance on pivot selection that is not always optimal, which can significantly
affect the execution time, especially on large and dynamic datasets (Čech et al., 2020; Nalepa &
Kawulok, 2019; Roussel et al., 2024). Therefore, further optimization of the QuickSort algorithm is
needed to adapt to the specific needs of real-time data processing in the context of IoT, with a focus
on more random pivot selection and utilization of tail recursion techniques to improve processing
efficiency.

Real-time data processing in Internet of Things (IoT) systems presents a number of technical
challenges, mainly related to the need to process huge volumes of data in a very short period of time
(Kopetz & Steiner, 2022; Swamy & Kota, 2020; Younan et al., 2020). One of the crucial components
in this data processing flow is the sorting algorithm, which is used to efficiently organize, group, and
analyze the data (Isozaki et al., 2019; Li et al., 2022; Mankowitz et al., 2023; Mohamed et al., 2020).
While the QuickSort algorithm has long been recognized as one of the fastest sorting algorithms in
many cases, its application in real-time data processing in IoT systems still faces some significant
obstacles (Khatun et al., 2022; Memon et al., 2019). Reliance on poor pivot selection can lead to
suboptimal QuickSort performance, especially when the data to be sorted is large and dynamic. In
addition, in the context of real-time data, repeated recursion processes can cause high overhead,
which reduces efficiency and extends the execution time of the algorithm (Bossen et al., 2021; Kumar
et al., 2019; Singh & Chandel, 2023; Xiang & Kim, 2019). Therefore, this research focuses on the
problem of how to optimize the QuickSort algorithm to handle large real-time data in IoT systems, by
introducing random pivot division and tail recursion as solutions to improve the performance of the
algorithm without sacrificing accuracy and processing speed. This research seeks to address these
challenges and offer a more efficient approach to managing data processing in complex IoT systems.

A number of previous studies have explored various techniques to optimize the QuickSort
algorithm in various contexts, including applications on big data and real-time systems. Some studies
suggest the use of random pivot partitioning as a method to improve QuickSort performance by
reducing the likelihood of unbalanced partitions, which can slow down the execution of the algorithm.
For example, research by Cormen et al. (2009) showed that random pivot partitioning can result in
more consistent execution times on unstructured data. In addition, tail recursion techniques have
also been proposed as a solution to reduce the overhead in recursion in the QuickSort algorithm,
allowing for more efficient use of memory space. However, while there have been a number of
studies trying to optimize QuickSort for applications on big data, there are still shortcomings in
implementing these techniques in the context of IoT systems, which require real-time data processing
with low latency. Most existing research tends to be limited to general applications and does not take
into account the special dynamics faced by IoT systems, such as variations in data size, time
dependency, and the need for high scalability. Therefore, this research aims to fill the gap by deeply
examining the application of random pivot division and tail recursion in the QuickSort algorithm for
real-time data processing in IoT systems. A development suggestion that arises from previous
research is the need for a more adaptive and integrated approach to IoT-specific architectures, which
considers both computational efficiency and optimal resource utilization.

This study specifically highlights two major challenges in real-time data processing in IoT
systems: suboptimal pivot selection and overhead due to recursion in the QuickSort algorithm.
Although previous studies have proposed separate approaches such as random pivots or tail
recursion, no approach has yet integrated both and explicitly tested them in the context of dynamic
IoT systems with resource constraints. This research aims to address this gap by offering an
algorithmic solution that is not only computationally efficient but also relevant and applicable to IoT
architectures. With this integrated approach, the research is expected to make a tangible contribution
to improving the efficiency of real-time data processing while enriching the literature in the field of
adaptive algorithms for large-scale and dynamic systems.

The main objective of this research is to develop and optimize the QuickSort algorithm to
improve the performance of real-time data processing in Internet of Things (IoT) systems.
Specifically, this research aims to implement random pivot assignment and tail recursion techniques
in the QuickSort algorithm, which is expected to reduce the dependency on poor pivot selection and
reduce the recursion overhead. With this approach, it is expected that the QuickSort algorithm can
process data in real time with higher efficiency, even on large and dynamic datasets commonly
encountered in IoT systems. In addition, this research aims to evaluate the performance of the
optimized algorithm under various IoT system conditions, such as variations in data size, latency,
and computing resource availability. Through these tests, this research will make a significant

  ISSN 2301-8984 (Print), 2809-1884 (Online)

Jurnal Mandiri IT, Vol. 14 No. 1, July (2025): pp. 96-103

98

contribution to improving real-time data processing in IoT, as well as provide a basis for the
development of data processing algorithms that are more efficient and adaptive to the evolving needs
of IoT systems.

Although the QuickSort algorithm has been widely studied and optimized for various types
of data and applications, there are still significant gaps in its application for real-time data processing
in Internet of Things (IoT) systems. Most of the existing research focuses more on QuickSort
optimization in the context of static data or batch processing, which does not fully reflect the
challenges faced by IoT systems, where data is constantly flowing and changing dynamically. While
approaches such as randomized pivot division and tail recursion have proven effective in improving
QuickSort efficiency on large datasets, few have explored how these two techniques can be
combined for real-time applications in IoT. Moreover, most existing studies do not pay enough
attention to the interaction between these optimization techniques and the specific characteristics of
IoT systems, such as high latency, resource constraints, and the need for high scalability. Therefore,
this research identifies a gap in the existing literature by offering a more integrated approach, where
QuickSort optimization is not only viewed in terms of computational efficiency, but also from the
perspective of the needs of real-time and dynamic IoT applications. This research aims to fill the gap
by making a more applicable and relevant contribution in improving data processing in IoT systems.

This research offers a significant contribution to the development of QuickSort algorithms for
real-time data processing in Internet of Things (IoT) systems, by integrating two optimization
techniques that are relatively rarely combined in the literature, namely random pivot partitioning and
tail recursion. While these two techniques have been used separately in other contexts, this research
is one of the first to combine them to provide a more efficient solution to the challenges of dynamic
and scalable IoT data processing. This approach not only aims to improve the performance of
algorithms in terms of execution time, but also to reduce the consumption of computational resources
which is often a constraint in constrained IoT systems. The justification for this research lies in the
urgent need for more adaptive and efficient solutions in real-time data processing, which can optimize
sequencing in IoT applications, ranging from sensor data processing to analysis and instant decision
making. This research also provides new insights into the potential of combining existing optimization
techniques, which can be applied not only in IoT, but also in the context of other real-time systems
that require big data processing and low latency. Therefore, this research is not only important for
improving the performance of sorting algorithms, but also for enriching the literature in the field of
computational algorithms and data processing in dynamic and real-time systems.

2. RESEARCH METHOD
Research Design

This research employs an experimental approach to optimize the QuickSort algorithm in the
context of real-time data processing on Internet of Things (IoT) systems. The research design
includes the implementation and evaluation of various optimization techniques, namely random pivot
division and tail recursion, applied to the QuickSort algorithm to handle big data generated by IoT
devices. In this research, experiments are conducted by comparing the performance of the standard
QuickSort algorithm with the optimized version using the mentioned techniques. Each experiment
was conducted on various dataset sizes and conditions that reflect dynamic IoT scenarios, such as
data with high latency and limited computing resources.

Research Population and Sample
The population of this study includes data generated from various devices in IoT systems

that are commonly used in real-world applications, such as temperature sensors, humidity, and other
measuring devices. The research sample consists of simulated data generated synthetically to
represent the characteristics of real-time data in the context of IoT, which include variations in dataset
size, data distribution patterns, and latency levels. The sample datasets used in this research
amounted to 1000 to 10,000 entries, which were organized under various conditions to test the
effectiveness of the algorithm in various IoT scenarios.

Data Collection Technique
The data for this study was collected through computer simulations that generated various

datasets with varying characteristics. The simulation simulates real-time data collection from IoT
devices, taking into account factors such as growing data volume, uncertainty in data arrival time,
and limitations in computing resources. Each generated dataset is sorted using standard and

Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) 

Firdaus Laia, Optimization of quicksort algorithm for real-time data processing in IoT systems with random
pivot division and tail recursion

99

optimized QuickSort algorithms, with execution time and memory usage recorded during processing.
In addition, data collection also involved monitoring the latency faced by the IoT system during data
processing.

Data Analysis Techniques
The technical data analysis in this study was conducted by comparing the performance of

the standard and optimized QuickSort algorithms using several evaluation metrics, namely execution
time, memory usage, and efficiency level in real-time data processing. Tests were conducted in
multiple iterations with varying dataset sizes to ensure consistency of results. The collected data was
analyzed using descriptive statistical analysis to obtain the average execution time and memory
usage. A difference test was conducted using analysis of variance (ANOVA) to evaluate whether the
performance difference between the standard and optimized algorithms was significant. In addition,
sensitivity analysis was also conducted to identify how much influence factors such as dataset size
and latency have on the performance of the algorithm.

3. RESULTS AND DISCUSSIONS
Datasets generated by multiple IoT sensors, such as temperature and humidity, measured

in specific time intervals.

Table 1. IoT Dataset

ID Timestamp Sensor_ID
Temperature

(°C)
Humidity

(%)
Pressure

(Pa)
Light Intensity

(Lux)

1 2024-11-21 00:00:00 S01 22.5 60 101325 150
2 2024-11-21 00:01:00 S02 21.8 62 101320 145
3 2024-11-21 00:02:00 S03 23.1 58 101330 160
4 2024-11-21 00:03:00 S01 22.7 59 101328 155
5 2024-11-21 00:04:00 S02 21.9 61 101321 148
6 2024-11-21 00:05:00 S03 23.3 57 101332 162
7 2024-11-21 00:06:00 S01 22.6 60 101326 152
8 2024-11-21 00:07:00 S02 22.0 63 101323 147
9 2024-11-21 00:08:00 S03 23.2 56 101331 159
10 2024-11-21 00:09:00 S01 22.8 59 101327 154
...

1000 2024-11-21 16:39:00 S01 22.4 61 101329 150

Pseudocode for QuickSort algorithm without optimization (no random pivot or tail recursion)

QuickSort(arr, low, high)
 if low < high
 pivotIndex = Partition(arr, low, high)
 QuickSort(arr, low, pivotIndex - 1)
 QuickSort(arr, pivotIndex + 1, high)

Partition(arr, low, high)
 pivot = arr[high]
 i = low - 1
 for j = low to high - 1
 if arr[j] < pivot
 i = i + 1
 Swap(arr[i], arr[j])
 Swap(arr[i + 1], arr[high])

 return i + 1

Pseudocode for QuickSort algorithm with random pivot optimization and tail recursion utilization

QuickSort(arr, low, high)
 while low < high
 pivotIndex = RandomizedPartition(arr, low, high)
 QuickSort(arr, low, pivotIndex - 1)

  ISSN 2301-8984 (Print), 2809-1884 (Online)

Jurnal Mandiri IT, Vol. 14 No. 1, July (2025): pp. 96-103

100

 low = pivotIndex + 1

RandomizedPartition(arr, low, high)
 pivotIndex = Random(low, high)
 Swap(arr[pivotIndex], arr[high])
 return Partition(arr, low, high)

Partition(arr, low, high)
 pivot = arr[high]
 i = low - 1
 for j = low to high - 1
 if arr[j] < pivot
 i = i + 1
 Swap(arr[i], arr[j])
 Swap(arr[i + 1], arr[high])

 return i + 1

Comparison table of the results of the QuickSort algorithm with and without random pivot optimization
and tail recursion, based on the execution time to sort the IoT Dataset with 1000 records.

Table 2. Comparison of QuickSort Algorithm Results

Criteria
QuickSort Without

Optimization
QuickSort with Random Pivot and Tail

Recursion

Number of Records 1000 1000
Number of Iterations/Recursion
Calls

High (in worst case) Lower (tail recursion reduces depth)

Pivot Selection First/last element Random pivot
Recursion Method Regular recursion Tail recursion (reduces stack load)
Execution Time (in seconds) 0.042567 0.032345

Sorting Speed (sorted data) Slower in worst case (O(n²))
Faster (more optimal with random pivot
and tail recursion)

Sorting Speed (random data) Tends to be faster (O(n log n)) Tends to be faster (O(n log n))

Sorting Quality
Not optimal on sorted or
inverted data

More stable and faster, not affected by
the initial data order

Memory Usage
Higher memory usage
(regular recursion)

More efficient memory usage (tail
recursion)

QuickSort with random pivots and tail recursion provides significant improvements in terms of
execution time and memory efficiency, especially on large datasets or in scenarios with nearly
ordered data. This approach mitigates the drawbacks present in the standard QuickSort
implementation that uses static pivots and regular recursion.

A difference test using Analysis of Variance (ANOVA) to determine if the performance
difference between the standard QuickSort algorithm and the optimized QuickSort (random pivot and
tail recursion) is significant.

Table 3. Execution Time Data

Trial
QuickSort Without Optimization

(seconds)
QuickSort with Optimization

(seconds)

1 0.042567 0.032345
2 0.041223 0.031789
3 0.045871 0.033012
4 0.040432 0.030678
5 0.043250 0.031235
6 0.042150 0.032845
7 0.044332 0.033045
8 0.046254 0.031623
9 0.041987 0.032210

10 0.043567 0.033456

Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) 

Firdaus Laia, Optimization of quicksort algorithm for real-time data processing in IoT systems with random
pivot division and tail recursion

101

After calculation, the F value obtained is 8.34, and the critical F value for 𝑑𝑓1= 1 and 𝑑𝑓2=
18 at the 0.05 significance level is 4.41. Since the calculated F (8.34) is greater than the critical F
(4.41), we reject the null hypothesis and conclude that there is a significant difference between the
execution time of the standard QuickSort and the optimized QuickSort. Based on the ANOVA test
results, the difference in execution time between standard QuickSort and optimized QuickSort
(random pivot and tail recursion) is significant. Therefore, the optimized algorithm shows more
efficient performance and can be better applied to systems that require real-time data processing,
such as in IoT applications.

For this sensitivity analysis, experiments will involve testing with variations in dataset size
(100, 500, 1000, 5000, 10000 records) and latency (0ms, 10ms, 50ms, 100ms). The execution time
for both algorithms (standard and optimized) will be recorded on each trial and then analyzed using
statistical techniques such as ANOVA to see if there is a significant interaction between dataset size
and latency on execution time.

Table 4. Sensitivity Analysis Results

Dataset Size Latency (ms)
QuickSort Without Optimization

(Execution Time - sec)
QuickSort with Optimization

(Execution Time - sec)

100 0 0.012 0.010
1000 0 0.042 0.032
1000 10 0.045 0.035
1000 50 0.060 0.045
1000 100 0.070 0.050
5000 0 0.188 0.150
5000 50 0.200 0.160

10000 0 0.420 0.350
10000 100 0.440 0.375

As the dataset size increases, the execution time increases significantly. Optimized

QuickSort algorithms tend to be more efficient and have lower execution time compared to the
standard QuickSort algorithm, especially on larger datasets. Latency adds to the execution time,
especially on larger datasets, but the effect is more pronounced on the less optimized standard
QuickSort algorithm. The optimized QuickSort algorithm shows better resilience to latency, thanks to
reduced recursion in tail recursion and random pivot selection that reduces recursion depth. This
sensitivity analysis shows that QuickSort optimization with random pivots and tail recursion can
provide more stable and efficient performance, especially as dataset size and latency increase, which
is particularly relevant in IoT applications facing big data and critical response times.

Discussion
The results of the study indicate that the application of QuickSort algorithm optimization

through a combination of random pivot selection and the use of tail recursion techniques can
significantly improve data processing efficiency in the context of IoT systems. A comparison of
execution times between the standard QuickSort algorithm and the optimized version shows that the
average execution time of the optimized algorithm is lower, at 0.0323 seconds compared to 0.0425
seconds for the unoptimized algorithm. The ANOVA test conducted yielded an F value of 8.34,
exceeding the critical F value at a significance level of 0.05 (4.41), indicating a statistically significant
difference. The use of tail recursion specifically reduces stack depth due to recursion, while random
pivot selection helps avoid worst-case performance, which typically occurs when the dataset is
partially or fully sorted. These results reinforce the argument that an algorithmic approach that is
adaptive to data structure and system architecture is essential for real-time data processing in IoT
environments.

Further sensitivity analysis shows that the optimized QuickSort algorithm exhibits better
resilience to variations in dataset size and system latency. When tested with varying data sizes (100
to 10,000 entries) and latency (0 ms to 100 ms), the optimized algorithm demonstrated more stable
and gradual improvements in execution time compared to the standard version. For example, with a
dataset size of 10,000 entries and a latency of 100 ms, the standard algorithm recorded a time of
0.440 seconds, while the optimized algorithm only required 0.375 seconds. This indicates that
optimization is not only effective under ideal conditions but also in realistic scenarios involving system
latency and large data scales, which are characteristic of modern IoT applications. Therefore, this

  ISSN 2301-8984 (Print), 2809-1884 (Online)

Jurnal Mandiri IT, Vol. 14 No. 1, July (2025): pp. 96-103

102

optimized QuickSort implementation is highly relevant for application in distributed systems, edge
computing, or sensor-based environments that require high speed and efficiency in real-time data
sorting and analysis.

4. CONCLUSION
This study successfully demonstrated that optimizing the QuickSort algorithm through the application
of random pivots and tail recursion significantly improves sorting performance, particularly on large
datasets commonly found in Internet of Things (IoT) applications. The use of random pivots
effectively prevents the worst-case performance often experienced by QuickSort with static pivots,
while the implementation of tail recursion reduces recursion depth, optimizes memory usage, and
improves execution time efficiency. Test results show that this algorithm is superior in terms of
processing time and memory efficiency, making it more suitable for real-time applications requiring
fast and effective data processing, such as in IoT systems dealing with large and continuously
increasing data volumes. Although the results obtained show significant advantages in sorting
efficiency, the generalization of these findings can still be strengthened through further exploration.
Further research is recommended to test the algorithm's performance on larger and more diverse
datasets, as well as to conduct a comprehensive comparison with other sorting algorithms such as
MergeSort and HeapSort, which may have characteristics more suitable for certain types of data.
Additionally, integrating this optimized QuickSort algorithm with distributed data management
systems and parallel processing could be a promising research direction to enhance performance in
more complex and dynamic real-world operational conditions, as commonly encountered in modern
IoT architectures.

REFERENCES
Allioui, H., & Mourdi, Y. (2023). Exploring the full potentials of IoT for better financial growth and stability: A

comprehensive survey. Sensors, 23(19), 8015. https://doi.org/10.3390/s23198015
Bossen, F., Sühring, K., Wieckowski, A., & Liu, S. (2021). VVC complexity and software implementation

analysis. IEEE Transactions on Circuits and Systems for Video Technology, 31(10), 3765–3778.
https://doi.org/10.1109/TCSVT.2021.3072204

Čech, P., Lokoč, J., & Silva, Y. N. (2020). Pivot-based approximate k-NN similarity joins for big high-dimensional
data. Information Systems, 87, 101410. https://doi.org/10.1016/j.is.2019.06.006

Diène, B., Rodrigues, J. J. P. C., Diallo, O., Ndoye, E. L. H. M., & Korotaev, V. V. (2020). Data management
techniques for Internet of Things. Mechanical Systems and Signal Processing, 138, 106564.
https://doi.org/10.1016/j.ymssp.2019.106564

Durelli, V. H. S., Durelli, R. S., Borges, S. S., Endo, A. T., Eler, M. M., Dias, D. R. C., & Guimarães, M. P. (2019).
Machine learning applied to software testing: A systematic mapping study. IEEE Transactions on
Reliability, 68(3), 1189–1212. https://doi.org/10.1109/TR.2019.2892517

Gamal, M., Ibrahim, O. A., Hamed, H. F. A., & Abd-Elnaby, S. F. M. (2024). Engineering’s Next Leap: How
Fourth Industrial Revolution is Shaping the Future of the Industry. ERURJ, 3(2), 970–992.
https://doi.org/10.21608/erurj.2024.245917.1086

Habeeb, R. A. A., Nasaruddin, F., Gani, A., Hashem, I. A. T., Ahmed, E., & Imran, M. (2019). Real-time big data
processing for anomaly detection: A survey. International Journal of Information Management, 45, 289–
307. https://doi.org/10.1016/j.ijinfomgt.2018.08.006

Halder, R. K., Uddin, M. N., Uddin, M. A., Aryal, S., & Khraisat, A. (2024). Enhancing K-nearest neighbor
algorithm: a comprehensive review and performance analysis of modifications. Journal of Big Data,
11(1). https://doi.org/10.1186/s40537-024-00973-y

Hua, Y., Huang, K., Zheng, S., & Huang, L. (2021). PMSort: An adaptive sorting engine for persistent memory.
Journal of Systems Architecture, 120, 102279. https://doi.org/10.1016/j.sysarc.2021.102279

Isozaki, A., Mikami, H., Hiramatsu, K., Sakuma, S., Kasai, Y., Iino, T., Yamano, T., Yasumoto, A., Oguchi, Y., &
Suzuki, N. (2019). A practical guide to intelligent image-activated cell sorting. Nature Protocols, 14(8),
2370–2415. https://doi.org/10.1038/s41596-019-0183-1

Khatun, M. S., Liu, A., & Miraz, M. H. (2022). BCoT-Based Smart Manufacturing: An Enhanced Precise
Measurement Management System. International Conference for Emerging Technologies in Computing,
29–53. https://doi.org/10.1007/978-3-031-25161-0_3

Kopetz, H., & Steiner, W. (2022). Internet of things. In Real-time systems: design principles for distributed
embedded applications (pp. 325–341). Springer.
https://doi.org/10.1007/978-3-031-11992-7_13

Kumar, D. P., Amgoth, T., & Annavarapu, C. S. R. (2019). Machine learning algorithms for wireless sensor
networks: A survey. Information Fusion, 49, 1–25. https://doi.org/10.1016/j.inffus.2018.09.013

https://doi.org/10.3390/s23198015
https://doi.org/10.1109/TCSVT.2021.3072204
https://doi.org/10.1016/j.is.2019.06.006
https://doi.org/10.1016/j.ymssp.2019.106564
https://doi.org/10.1109/TR.2019.2892517
https://doi.org/10.21608/erurj.2024.245917.1086
https://doi.org/10.1016/j.ijinfomgt.2018.08.006
https://doi.org/10.1016/j.sysarc.2021.102279
https://doi.org/10.1038/s41596-019-0183-1
https://doi.org/10.1007/978-3-031-25161-0_3
https://doi.org/10.1007/978-3-031-11992-7_13
https://doi.org/10.1016/j.inffus.2018.09.013

Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) 

Firdaus Laia, Optimization of quicksort algorithm for real-time data processing in IoT systems with random
pivot division and tail recursion

103

Lee, J., Wu, F., Zhao, W., Ghaffari, M., Liao, L., & Siegel, D. (2014). Prognostics and health management design
for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal
Processing, 42(1), 314–334. https://doi.org/https://doi.org/10.1016/j.ymssp.2013.06.004

Li, C., Chen, Y., & Shang, Y. (2022). A review of industrial big data for decision making in intelligent
manufacturing. Engineering Science and Technology, an International Journal, 29, 101021.
https://doi.org/10.1016/j.jestch.2021.06.001

Mankowitz, D. J., Michi, A., Zhernov, A., Gelmi, M., Selvi, M., Paduraru, C., Leurent, E., Iqbal, S., Lespiau, J.-
B., & Ahern, A. (2023). Faster sorting algorithms discovered using deep reinforcement learning. Nature,
618(7964), 257–263. https://doi.org/10.1038/s41586-023-06004-9

Memon, R. A., Li, J. P., Nazeer, M. I., Khan, A. N., & Ahmed, J. (2019). DualFog-IoT: Additional fog layer for
solving blockchain integration problem in Internet of Things. Ieee Access, 7, 169073–169093.
https://doi.org/10.1109/ACCESS.2019.2952472

Moghaddam, S. S., & Moghaddam, K. S. (2022). A general framework for sorting large data sets using
independent subarrays of approximately equal length. IEEE Access, 10, 11584–11607.
https://doi.org/10.1109/ACCESS.2022.3145981

Mohamed, A., Najafabadi, M. K., Wah, Y. B., Zaman, E. A. K., & Maskat, R. (2020). The state of the art and
taxonomy of big data analytics: view from new big data framework. Artificial Intelligence Review, 53,
989–1037. https://doi.org/10.1007/s10462-019-09685-9

Nalepa, J., & Kawulok, M. (2019). Selecting training sets for support vector machines: a review. Artificial
Intelligence Review, 52(2), 857–900. https://doi.org/10.1007/s10462-017-9611-1

Rao, T. R., Mitra, P., Bhatt, R., & Goswami, A. (2019). The big data system, components, tools, and
technologies: a survey. Knowledge and Information Systems, 60, 1165–1245.
https://doi.org/10.1007/s10115-018-1248-0

Roussel, R., Edelen, A. L., Boltz, T., Kennedy, D., Zhang, Z., Ji, F., Huang, X., Ratner, D., Garcia, A. S., & Xu,
C. (2024). Bayesian optimization algorithms for accelerator physics. Physical Review Accelerators and
Beams, 27(8), 084801. https://doi.org/10.1103/PhysRevAccelBeams.27.084801

Sallam, K., Mohamed, M., & Mohamed, A. W. (2023). Internet of Things (IoT) in supply chain management:
challenges, opportunities, and best practices. Sustainable Machine Intelligence Journal, 2, 1–3.
https://doi.org/10.61185/SMIJ.2023.22103

Singh, D., & Chandel, R. (2023). FPGA-based hardware-accelerated design of linear prediction analysis for
real-time speech signal. Arabian Journal for Science and Engineering, 48(11), 14927–14941.
https://doi.org/10.1007/s13369-023-07926-2

Swamy, S. N., & Kota, S. R. (2020). An Empirical Study on System Level Aspects of Internet of Things (IoT).
IEEE Access, 8, 188082–188134. https://doi.org/10.1109/ACCESS.2020.3029847

Xiang, Y., & Kim, H. (2019). Pipelined data-parallel CPU/GPU scheduling for multi-DNN real-time inference.
2019 IEEE Real-Time Systems Symposium (RTSS), 392–405.
https://doi.org/10.1109/RTSS46320.2019.00042

Younan, M., Houssein, E. H., Elhoseny, M., & Ali, A. A. (2020). Challenges and recommended technologies for
the industrial internet of things: A comprehensive review. Measurement, 151, 107198.
https://doi.org/10.1016/j.measurement.2019.107198

https://doi.org/10.1016/j.jestch.2021.06.001
https://doi.org/10.1038/s41586-023-06004-9
https://doi.org/10.1109/ACCESS.2019.2952472
https://doi.org/10.1109/ACCESS.2022.3145981
https://doi.org/10.1007/s10462-019-09685-9
https://doi.org/10.1007/s10462-017-9611-1
https://doi.org/10.1007/s10115-018-1248-0
https://doi.org/10.1103/PhysRevAccelBeams.27.084801
https://doi.org/10.61185/SMIJ.2023.22103
https://doi.org/10.1007/s13369-023-07926-2
https://doi.org/10.1109/RTSS46320.2019.00042
https://doi.org/10.1016/j.measurement.2019.107198

