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 This study propose~s a De~e~p Ne~ural Ne~twork (DNN) frame~work to 
pre~dict joint re~action force~ ratios in structural analysis using datase~ts 
obtaine~d from SAP2000 simulations. The~ datase~ts cove~r various load 
case~s and ge~ome~trical parame~te~rs, e~nsuring the~ mode~l is e~xpose~d 
to dive~rse~ structural sce~narios. The~ DNN archite~cture~ comprise~s 
multiple~ fully conne~cte~d laye~rs, e~mploying Re~LU activation functions, 
dropout re~gularization, and batch normalization for stable~ training. 
Mode~l pe~rformance~ was e~valuate~d using Me~an Square~d E~rror 
(MSE~), Me~an Absolute~ E~rror (MAE~), R² score~, and pre~diction 
accuracy within a 5% e~rror margin critical for civil e~ngine~e~ring 
applications. The~ re~sults de~monstrate~ e~xce~lle~nt pre~dictive~ 
capabilitie~s, achie~ving accuracy le~ve~ls e~xce~e~ding 98% across all 
datase~ts. Notably, the~ third datase~t yie~lde~d the~ lowe~st accuracy at 
98.97% and an R² score~ of 0.9915, with slightly e~le~vate~d e~rror 
me~trics (MSE~ of 5.11, RMSE~ of 2.26, and MAE~ of 1.51). De~spite~ 
the~se~ challe~nge~s, the~ DNN mode~l consiste~ntly de~live~rs robust 
pre~dictions, showcasing its pote~ntial for practical structural he~alth 
monitoring and de~sign optimization. Future~ work should conside~r 
incorporating more~ dive~rse~ and e~xpe~rime~ntal data to e~nhance~ mode~l 
robustne~ss furthe~r. 
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1. INTRODUCTION  
The~ main Accurate~ pre~diction of joint re~action force~s is a fundame~ntal aspe~ct of structural 
analysis, as the~se~ force~s re~pre~se~nt how inte~rnal loads are~ transfe~rre~d and distribute~d across the~ 
conne~ctivity of a structural syste~m. In civil e~ngine~e~ring practice~, joint re~action force~ ratios 
(JRFRs) offe~r critical insights into the~ proportion of force~s carrie~d by individual supports or 
conne~ctions, which is e~sse~ntial for de~sign safe~ty, structural optimization, and failure~ pre~ve~ntion. 
Finite~ e~le~me~nt analysis (FE~A) software~ such as SAP2000 is wide~ly use~d to compute~ the~se~ 
value~s through compre~he~nsive~ simulations of both simple~ and comple~x structural syste~ms. 
Howe~ve~r, re~pe~ate~d analyse~s unde~r varying load conditions or for large~-scale~ de~sign ite~rations in 
SAP2000 can be~ computationally e~xpe~nsive~ and time~-consuming, e~spe~cially whe~n de~aling with 
high-fide~lity mode~ls and dynamic loading sce~narios (Ahmad e~t al., 2023), (Azanaw, 2024). 
Moreover, the identification of critical joints—such as those with the highest reaction forces—is 
typically performed manually in SAP2000 using visual post-processing tools. This step requires 
engineers to inspect each load case one by one to extract maximum values, which not only slows 
down the workflow but also introduces the potential for human error. When simulations are 
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repeated across dozens or hundreds of scenarios, this manual process becomes a significant 
computational and operational bottleneck. 

In re~ce~nt ye~ars, advance~me~nts in artificial inte~llige~nce~ (AI), particularly de~e~p le~arning, 
have~ shown substantial pote~ntial in e~nhancing structural e~ngine~e~ring workflows through data-
drive~n mode~ling and surrogate~ analysis. De~e~p Ne~ural Ne~tworks (DNNs), as unive~rsal function 
approximators, have~ de~monstrate~d supe~rior capabilitie~s in capturing comple~x nonline~ar and 
multivariate~ re~lationships inhe~re~nt in structural be~havior (Ke~ke~z & Kubica, 2021), (Al-Gburi e~t al., 
2025). Compare~d to shallow ne~ural ne~tworks, DNNs offe~r improve~d fe~ature~ e~xtraction 
capabilitie~s, e~nabling more~ accurate~ pre~dictions of me~chanical re~sponse~s such as stre~ss fie~lds 
(Bhaduri e~t al., 2022), load capacitie~s (Işık e~t al., 2023), and se~ismic pe~rformance~ (Bond e~t al., 
2024), e~ve~n in the~ abse~nce~ of e~xplicit analytical mode~ls. 

Prior re~se~arch has e~xte~nsive~ly focuse~d on AI applications for pre~dicting global structural 
pe~rformance~, such as load-displace~me~nt be~havior (Al-Gburi e~t al., 2025), mate~rial prope~rty 
e~stimation (Ke~ke~z & Kubica, 2021), and damage~ de~te~ction in full-scale~ structure~s (Bui-Ngoc e~t 
al., 2024), (Jia & Li, 2023). Furthe~rmore~, re~ce~nt de~ve~lopme~nts in physics-informe~d ne~ural 
ne~tworks and hybrid AI mode~ls have~ e~nable~d more~ robust mode~ling of dynamic syste~ms 
(Dje~umou e~t al., 2022), (Antone~lo e~t al., 2024). De~spite~ the~se~ advance~me~nts, the~re~ has be~e~n 
limite~d atte~ntion toward pre~dicting localize~d structural re~sponse~s such as joint re~action force~s, 
e~spe~cially whe~n de~rive~d from high-quality finite~ e~le~me~nt simulations. Most e~xisting studie~s e~ithe~r 
ove~rsimplify support conditions or tre~at the~m as de~te~rministic boundary constraints, the~re~by 
ne~gle~cting the~ir variability unde~r re~al-world conditions. 

Re~ce~nt studie~s have~ de~monstrate~d the~ e~ffe~ctive~ne~ss of surrogate~ mode~ling te~chnique~s, 
including de~e~p le~arning, in re~ducing the~ computational burde~n of structural simulations. For 
instance~, DNN-base~d surrogate~ mode~ls have~ be~e~n succe~ssfully applie~d to approximate~ FE~A 
re~sults with high accuracy, e~nabling rapid e~valuation of structural re~sponse~s unde~r varying 
parame~te~rs (Zhang e~t al., 2020), (Hade~rbache~ e~t al., 2021). Additionally, the~ e~me~rge~nce~ of 
physics-informe~d ne~ural ne~tworks (PINNs) as a me~thod to inte~grate~ gove~rning physical laws into 
data-drive~n mode~ls has significantly improve~d pre~diction re~liability for comple~x structural 
phe~nome~na, (Al-Adly & Kripakaran, 2024). 

Spe~cifically, the~ pre~diction of joint re~action force~s has be~e~n e~xplore~d in only a limite~d 
numbe~r of AI-base~d studie~s, whe~re~ multilaye~r pe~rce~ptrons and convolutional archite~cture~s 
de~monstrate~d re~asonable~ accuracy but ofte~n lacke~d scalability or inte~rpre~tability for large~-scale~ 
mode~ls (Honglan e~t al., 2020). The~ ke~y challe~nge~ re~mains in de~ve~loping DNN archite~cture~s that 
balance~ pre~dictive~ accuracy and computational e~fficie~ncy, particularly whe~n applie~d to 
comme~rcial structural software~ outputs like~ SAP2000. This re~se~arch gap is e~spe~cially e~vide~nt 
conside~ring that e~xte~nsive~ simulation data from SAP2000 re~mains unde~rutilize~d in the~ 
de~ve~lopme~nt of pre~dictive~ AI mode~ls. While~ the~ inte~gration of AI in structural he~alth monitoring 
(SHM) and stre~ss pre~diction has gaine~d traction (Bhaduri e~t al., 2022), (Zhang e~t al., 2020), 
(Hade~rbache~ e~t al., 2021), little~ atte~ntion has be~e~n give~n to le~arning the~ unde~rlying patte~rns of 
JRFRs using de~e~p le~arning, e~spe~cially in a supe~rvise~d le~arning se~tting informe~d by SAP2000-
ge~ne~rate~d data. 

To addre~ss this challe~nge~, this study propose~s the~ imple~me~ntation of a De~e~p Ne~ural 
Ne~twork mode~l to pre~dict joint re~action force~ ratios base~d on structural input fe~ature~s de~rive~d 
from SAP2000 simulations. The~ main obje~ctive~s of this re~se~arch are~ to de~ve~lop a pre~dictive~ 
DNN mode~l traine~d on a curate~d datase~t of SAP2000 structural analyse~s, to e~valuate~ the~ 
mode~l’s pe~rformance~ in te~rms of accuracy and ge~ne~ralization, and to de~monstrate~ the~ mode~l’s 
applicability in re~ducing computational costs and acce~le~rating structural de~sign de~cisions. The~ 
contribution of this work lie~s in bridging the~ gap be~twe~e~n finite~ e~le~me~nt simulation outputs and 
mode~rn AI-base~d pre~dictive~ mode~ling. By le~ve~raging DNNs for JRFR e~stimation, the~ propose~d 
approach offe~rs a data-drive~n surrogate~ tool to support e~ngine~e~rs in e~arly-stage~ de~sign 
e~valuations, se~nsitivity studie~s, and rapid de~cision-making unde~r unce~rtainty. 

2. RESEARCH METHOD  
Data Acquistion and Preprocessing 

This study use~s structural joint re~action data obtaine~d from finite~ e~le~me~nt analysis (FE~A), 
e~xtracte~d from an E~xce~l datase~t. The~ datase~t include~s dire~ctional force~ and mome~nt 
compone~nts (F1, F2, F3, M1, M2, M3) along with load combination ide~ntifie~rs labe~le~d unde~r the~ 
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“OutputCase~” column. Following the~ proce~dure~s of  (Wang e~t al., 2024) and (Jin e~t al., 2023), raw 
data we~re~ cle~ane~d by re~moving null value~s (NaN) and conve~rting re~le~vant columns to nume~rical 
data type~s. E~ach data instance~ was the~n cate~gorize~d into one~ of four structural load type~s: Non-
Foundation, Se~rvice~ability, Nominal, and Ultimate~, in accordance~ with the~ structural loading 
classifications propose~d by (Do e~t al., 2025). 

To pre~pare~ the~ datase~t for mode~l training, absolute~ value~s of the~ ve~rtical force~ (F3) and 
be~nding mome~nts (M1 and M2) we~re~ calculate~d and normalize~d against the~ maximum value~s in 
the~ir re~spe~ctive~ groups, re~sulting in re~lative~ ratios. The~se~ ratios re~fle~ct the~ pe~rce~ntage~ 
contribution of e~ach re~sponse~ compare~d to the~ pe~ak structural re~sponse~ unde~r similar load 
conditions. Cate~gorical fe~ature~s such as Case~Type~, Ste~pType~, and OutputCase~ we~re~ 
transforme~d using one~-hot e~ncoding—a standard me~thod for conve~rting nominal fe~ature~s into 
machine~-re~adable~ formats (Sorilla e~t al., 2024). This pre~proce~ssing pipe~line~ was de~signe~d to 
e~nsure~ nume~rical consiste~ncy and inte~rpre~tability, consiste~nt with me~thods e~mploye~d by (Kim e~t 
al., 2024) for de~e~p le~arning-base~d structural de~fe~ct classification. 

The selection of F3, M1, and M2 as dominant target features was based on their structural 
importance. F3 (vertical force) is directly associated with gravity loads and support reactions, 
playing a critical role in assessing bearing capacity. M1 and M2 represent the major bending 
moments acting on joints, which are key indicators of structural performance under both service 
and ultimate limit states. In contrast, components such as F1, F2 (horizontal forces) and M3 
(torsion) typically contribute less significantly to overall structural demand in typical building 
systems. By focusing on F3, M1, and M2, the model captures the most structurally relevant 
responses, resulting in more interpretable and practical prediction outputs. 

Deep Neural Network 
 The~ pre~dictive~ mode~l de~ve~lope~d in this study is a fully conne~cte~d De~e~p Ne~ural Ne~twork 
(DNN) constructe~d using Te~nsorFlow and Ke~ras. The~ archite~cture~ consists of an input laye~r, 
thre~e~ hidde~n laye~rs, and a single~ output laye~r. Spe~cifically, the~ ne~twork include~s a first de~nse~ 
laye~r with 256 units and Re~LU activation, followe~d by a 30% dropout laye~r to pre~ve~nt ove~rfitting. 
This is followe~d by a se~cond de~nse~ laye~r with 128 units (Re~LU), anothe~r 30% dropout, and a third 
de~nse~ laye~r with 64 units (Re~LU). The~ output laye~r consists of one~ ne~uron with a line~ar activation 
function to pe~rform re~gre~ssion. 

This structure~ is adapte~d from similar archite~cture~s applie~d in structural he~alth monitoring 
by (Ahmadzade~h e~t al., 2024) and in 3D point-cloud analysis for unstructure~d e~nvironme~nts by 
(Azhari e~t al., 2021). The~ use~ of Re~LU e~nsure~s non-line~arity in le~arning, while~ dropout laye~rs 
e~nhance~ ge~ne~ralization by randomly de~activating node~s during training (Dong e~t al., 2024), (Do 
e~t al., 2025). 

Model Evaluation Metrics 
 The~ datase~t was split into training and te~st se~ts with an 80:20 ratio using the~ 
train_te~st_split me~thod, consiste~nt with be~st practice~s in supe~rvise~d machine~ le~arning (Jin e~t al., 
2023), (Bakshi & Chaudhary, 2024). Fe~ature~ scaling was pe~rforme~d using StandardScale~r from 
Scikit-le~arn to normalize~ input data to ze~ro me~an and unit variance~ (Dong e~t al., 2024), (Kim e~t 
al., 2024). The~ mode~l was compile~d using the~ Adam optimize~r and Me~an Square~d E~rror (MSE~) 
as the~ loss function, which is we~ll-suite~d for continuous targe~t pre~diction tasks. 

Mode~l training was conducte~d for a maximum of 200 e~pochs with a batch size~ of 64. To 
mitigate~ ove~rfitting, e~arly stopping was applie~d with a patie~nce~ of 20 e~pochs base~d on validation 
loss monitoring, in accordance~ with re~comme~ndations from (Kim e~t al., 2024) and (Sorilla e~t al., 
2024) Additionally, 20% of the~ training data was re~se~rve~d for inte~rnal validation during mode~l 
fitting. 

Implementation Enviroment 
 All stage~s of data proce~ssing, mode~l de~ve~lopme~nt, training, and e~valuation we~re~ carrie~d 
out in the~ Python programming e~nvironme~nt. Ke~y librarie~s include~ Pandas and NumPy for data 
manipulation, Scikit-le~arn for pre~proce~ssing and mode~l e~valuation, Te~nsorFlow with Ke~ras for 
ne~ural ne~twork de~ve~lopme~nt and training, and Matplotlib for visualization. 

This imple~me~ntation se~tup is consiste~nt with prior re~se~arch in structural inte~grity 
pre~diction using de~e~p le~arning, as de~monstrate~d by (Dong e~t al., 2024), (Jin e~t al., 2023),and 
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(Ahmadzade~h e~t al., 2024), providing a robust and fle~xible~ platform for machine~ le~arning 
applications in structural e~ngine~e~ring. 

3. RESULTS AND DISCUSSIONS 
This study utilize~d thre~e~ distinct datase~ts de~rive~d from SAP2000 simulations to e~valuate~ the~ 
pe~rformance~ of the~ propose~d De~e~p Ne~ural Ne~twork (DNN) mode~l in pre~dicting joint re~action 
force~ ratios. The~ re~sults de~monstrate~ that the~ DNN mode~l consiste~ntly achie~ve~s high pre~dictive~ 
accuracy across all datase~ts, highlighting its robustne~ss and ge~ne~ralization capabilitie~s. 

For the~ first datase~t, the~ mode~l re~ache~d a pre~diction accuracy of 99.73% within an e~rror 
tole~rance~ of 5%, with an R² score~ of 0.9976 indicating e~xce~lle~nt goodne~ss-of-fit. The~ me~an 
square~d e~rror (MSE~) was re~corde~d at 1.85, while~ the~ me~an absolute~ e~rror (MAE~) and root me~an 
square~d e~rror (RMSE~) we~re~ 1.01 and 1.36, re~spe~ctive~ly. The~se~ me~trics re~fle~ct a low ave~rage~ 
de~viation be~twe~e~n pre~dicte~d and actual value~s, confirming the~ mode~l's pre~cision. 

 

 
Figure~ 1. Le~arning curve~ of the~ DNN mode~l for datase~t 1 

 

 
Figure~ 2. Pe~dicte~d vs actual plot for datase~t 1 

 
The~ se~cond datase~t yie~lde~d a slightly lowe~r accuracy of 99.08%, with an R² score~ of 

0.9961. The~ MSE~ incre~ase~d to 2.89, while~ the~ MAE~ and RMSE~ value~s we~re~ 1.26 and 1.70, 
re~spe~ctive~ly. De~spite~ the~ marginal de~cre~ase~ in pe~rformance~ compare~d to the~ first datase~t, the~ 
mode~l still de~monstrate~d strong pre~dictive~ ability, e~ffe~ctive~ly capturing the~ nonline~ar re~lationships 
within the~ data. 
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Figure~ 3. Le~arning curve~ of the~ dnn mode~l for datase~t 2 

 

 
Figure~ 4. Pe~dicte~d vs actual plot for datase~t 2 

 
Notably, the~ third datase~t produce~d the~ lowe~st accuracy among the~ thre~e~, achie~ving an 

accuracy of 98.97% and an R² score~ of 0.9915. The~ MSE~ rose~ to 5.11, with corre~sponding MAE~ 
and RMSE~ value~s of 1.51 and 2.26, re~spe~ctive~ly. The~se~ re~sults sugge~st that the~ re~lative~ly low 
accuracy for the~ third datase~t might be~ due~ to insufficie~nt data quantity or an inade~quate~ numbe~r 
of training e~pochs, pre~ve~nting the~ DNN from fully le~arning the~ unde~rlying patte~rns. Ne~ve~rthe~le~ss, 
the~ pre~diction re~sults still de~monstrate~ e~xce~lle~nt pe~rformance~, with ne~arly 99% accuracy and 
re~lative~ly low e~rrors, indicating that de~spite~ the~ limiting factors, the~ DNN mode~l re~mains highly 
capable~ of producing accurate~ and practically acce~ptable~ pre~dictions for structural analysis 
applications. 

 

 
Figure~ 5. Le~arning curve~ of the~ DNN mode~l for datase~t 3 
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Figure~ 6. Pe~dicte~d vs actual plot for datase~t 3 

 
The~ following table~ summarize~s the~ pe~rformance~ me~trics of the~ propose~d DNN mode~l 

for e~ach datase~t te~ste~d: 
 

Table~ 1. The~ pe~rformance~ of ... 

Datase~t Accuracy  R Score~ MSE~ RMSE~ MAE~ 

Datase~t 1 99.73% 0.9976 1.85 1.36 1.01 
Datase~t 2 99.08% 0.9961 2.89 1.70 1.26 
Datase~t 3 98.97% 0.9915 5.11 1.51 2.26 

 
Base~d on the~ data pre~se~nte~d in Table~ 1, the~ propose~d DNN mode~l consiste~ntly 

de~monstrate~s high accuracy and strong pre~dictive~ pe~rformance~ across all thre~e~ datase~ts, with 
accuracy ranging from 98.97% to 99.73% and R² score~s e~xce~e~ding 0.99 in e~ach case~. The~ me~an 
square~d e~rror (MSE~), root me~an square~d e~rror (RMSE~), and me~an absolute~ e~rror (MAE~) me~trics 
also indicate~ low pre~diction e~rrors, confirming the~ mode~l’s robustne~ss. Ove~rall, the~se~ re~sults 
confirm that the~ propose~d DNN frame~work is highly e~ffe~ctive~ for pre~dicting joint re~action force~ 
ratios in structural analysis. The~ low e~rror me~trics and high coe~fficie~nt of de~te~rmination across 
varie~d datase~ts validate~ the~ mode~l’s re~liability and its pote~ntial application in practical structural 
he~alth monitoring and de~sign optimization. Future~ work could focus on e~xpanding datase~t 
dive~rsity and incorporating re~al-world e~xpe~rime~ntal data to furthe~r e~nhance~ mode~l robustne~ss. 

4. CONCLUSION 
The~ De~e~p Ne~ural Ne~twork (DNN) mode~l de~ve~lope~d in this study de~monstrate~d e~xce~lle~nt 
pe~rformance~ in pre~dicting joint re~action force~ ratios within structural analysis tasks. Using thre~e~ 
diffe~re~nt datase~ts de~rive~d from SAP2000 simulations, the~ mode~l consiste~ntly achie~ve~d high 
accuracy and low e~rror me~trics across all case~s. The~ pre~diction accuracy re~maine~d above~ 98%, 
with strong R² score~s indicating that the~ mode~l e~ffe~ctive~ly capture~d the~ unde~rlying re~lationships 
in the~ data. Although the~ third datase~t showe~d a slightly lowe~r accuracy compare~d to the~ othe~rs, 
this diffe~re~nce~ was marginal and still within an acce~ptable~ range~, like~ly influe~nce~d by factors such 
as limite~d data size~ or insufficie~nt training e~pochs. The~se~ re~sults highlight the~ mode~l’s 
robustne~ss, ge~ne~ralization capability, and adaptability to datase~ts with varying comple~xitie~s and 
noise~ le~ve~ls, which are~ critical for re~al-world structural he~alth monitoring and de~sign optimization. 

Ove~rall, the~ findings confirm that the~ propose~d DNN frame~work is re~liable~ and e~ffe~ctive~ 
for structural e~ngine~e~ring applications, offe~ring pre~cise~ pre~dictions that can support de~cision-
making proce~sse~s. Future~ re~se~arch should focus on e~xpanding the~ dive~rsity of datase~ts, 
incorporating e~xpe~rime~ntal and re~al-world data, and optimizing the~ training proce~ss to furthe~r 
e~nhance~ the~ mode~l’s pe~rformance~ and applicability. This continuous improve~me~nt will contribute~ 
to more~ accurate~ and de~pe~ndable~ structural analysis tools in practical e~ngine~e~ring sce~nario. 

 Importantly, the results of this study can be directly utilized by civil engineering 
practitioners who do not have expertise in machine learning. Since the DNN model operates on 
input data already familiar to structural engineers such as load combinations and joint force 
components it can be integrated into a simplified application or plugin. This allows engineers to 
benefit from rapid and accurate predictions without needing to understand or interact with the 
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underlying algorithm. Thus, this research not only demonstrates the predictive potential of AI in 
structural design but also offers practical accessibility for day to day engineering decision making 
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