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1. INTRODUCTION

The main Accurate prediction of joint reaction forces is a fundamental aspect of structural
analysis, as these forces represent how internal loads are transferred and distributed across the.
connectivity of a structural system. In civil engineering practice, joint reaction force ratios
(JRFRs) offer critical insights into the proportion of forces carried by individual supports or
connections, which is essential for design safety, structural optimization, and failure. prevention.
Finite. element analysis (FEA) software such as SAP2000 is widely used to compute these
values through comprehensive simulations of both simple. and complex structural systems.
However, repeated analyses under varying load conditions or for large-scale design iterations in
SAP2000 can be computationally expensive and time-consuming, especially when dealing with
high-fidelity models and dynamic loading scenarios (Ahmad et al.,, 2023), (Azanaw, 2024).
Moreover, the identification of critical joints—such as those with the highest reaction forces—is
typically performed manually in SAP2000 using visual post-processing tools. This step requires
engineers to inspect each load case one by one to extract maximum values, which not only slows
down the workflow but also introduces the potential for human error. When simulations are
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repeated across dozens or hundreds of scenarios, this manual process becomes a significant
computational and operational bottleneck.

In recent years, advancements in artificial intelligence (Al), particularly deep learning,
have shown substantial potential in enhancing structural engineering workflows through data-
driven modeling and surrogate analysis. Deep Neural Networks (DNNs), as universal function
approximators, have demonstrated superior capabilities in capturing complex nonlinear and
multivariate relationships inherent in structural be havior (Kekez & Kubica, 2021), (Al-Gburi et al.,
2025). Compared to shallow neural networks, DNNs offer improved feature extraction
capabilities, enabling more. accurate predictions of mechanical responses such as stress fields
(Bhaduri et al., 2022), load capacities (Isik et al., 2023), and seismic performance (Bond et al.,
2024), even in the absence of explicit analytical models.

Prior research has extensively focused on Al applications for predicting global structural
performance, such as load-displacement behavior (Al-Gburi et al., 2025), material property
estimation (Kekez & Kubica, 2021), and damage detection in full-scale structures (Bui-Ngoc et
al., 2024), (Jia & Li, 2023). Furthermore, recent developments in physics-informed neural
networks and hybrid Al models have enabled more robust modeling of dynamic systems
(Djeumou et al., 2022), (Antonelo et al., 2024). Despite these advancements, there has been
limited attention toward predicting localized structural responses such as joint reaction forces,
especially when derived from high-quality finite. ele ment simulations. Most existing studie s either
oversimplify support conditions or treat them as deterministic boundary constraints, thereby
neglecting their variability under real-world conditions.

Recent studies have de monstrated the effectiveness of surrogate modeling techniques,
including deep learning, in reducing the computational burden of structural simulations. For
instance, DNN-based surrogate models have been successfully applied to approximate FEA
results with high accuracy, enabling rapid evaluation of structural responses under varying
parameters (Zhang et al., 2020), (Haderbache et al., 2021). Additionally, the emergence of
physics-informed neural networks (PINNs) as a method to integrate governing physical laws into
data-driven models has significantly improved prediction reliability for complex structural
phenomena, (Al-Adly & Kripakaran, 2024).

Specifically, the prediction of joint reaction forces has been explored in only a limited
number of Al-based studies, where multilayer perceptrons and convolutional architectures
demonstrated reasonable accuracy but often lacked scalability or interpretability for large-scale
models (Honglan et al., 2020). The key challenge remains in developing DNN architectures that
balance predictive accuracy and computational efficiency, particularly when applied to
commercial structural software outputs like SAP2000. This research gap is especially evident
considering that extensive simulation data from SAP2000 remains underutilized in the
development of predictive. Al models. While the integration of Al in structural health monitoring
(SHM) and stress prediction has gained traction (Bhaduri et al., 2022), (Zhang et al., 2020),
(Haderbache et al., 2021), little. attention has been given to learning the underlying patterns of
JRFRs using deep learning, especially in a supervised learning setting informed by SAP2000-
generated data.

To address this challenge, this study proposes the. implementation of a Deep Neural
Network model to predict joint reaction force ratios based on structural input features derived
from SAP2000 simulations. The main objectives of this research are to develop a predictive
DNN model trained on a curated dataset of SAP2000 structural analyses, to evaluate the
model's performance in terms of accuracy and generalization, and to de monstrate the model’s
applicability in reducing computational costs and accelerating structural design decisions. The.
contribution of this work lies in bridging the gap between finite element simulation outputs and
modern Al-based predictive modeling. By leveraging DNNs for JRFR estimation, the proposed
approach offers a data-driven surrogate tool to support engineers in early-stage design
evaluations, sensitivity studie s, and rapid decision-making under uncertainty.

2. RESEARCH METHOD
Data Acquistion and Preprocessing

This study uses structural joint reaction data obtained from finite. element analysis (FEA),
extracted from an Excel dataset. The dataset includes directional force. and moment
components (F1, F2, F3, M1, M2, M3) along with load combination identifiers labeled under the

Independent IT Journal, Vol. 14 No. 1, July (2025): pp. 21-28



Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) a 23

“OutputCase” column. Following the procedures of (Wang et al., 2024) and (Jin et al., 2023), raw
data were. cleaned by removing null values (NaN) and converting relevant columns to numerical
data types. Each data instance was then categorized into one. of four structural load types: Non-
Foundation, Serviceability, Nominal, and Ultimate, in accordance with the structural loading
classifications proposed by (Do et al., 2025).

To prepare the dataset for model training, absolute values of the vertical force (F3) and
bending moments (M1 and M2) were calculated and normalized against the. maximum values in
their respective. groups, resulting in relative ratios. These ratios reflect the percentage
contribution of each response compared to the peak structural response under similar load
conditions. Categorical features such as CaseType, StepType, and OutputCase were
transformed using one-hot encoding—a standard method for converting nominal features into
machine-readable. formats (Sorilla et al., 2024). This preprocessing pipeline was designed to
ensure. numerical consistency and interpretability, consistent with methods employed by (Kim et
al., 2024) for deep learning-based structural de fect classification.

The selection of F3, M1, and M2 as dominant target features was based on their structural
importance. F3 (vertical force) is directly associated with gravity loads and support reactions,
playing a critical role in assessing bearing capacity. M1 and M2 represent the major bending
moments acting on joints, which are key indicators of structural performance under both service
and ultimate limit states. In contrast, components such as F1, F2 (horizontal forces) and M3
(torsion) typically contribute less significantly to overall structural demand in typical building
systems. By focusing on F3, M1, and M2, the model captures the most structurally relevant
responses, resulting in more interpretable and practical prediction outputs.

Deep Neural Network

The predictive. model developed in this study is a fully connected Deep Neural Network
(DNN) constructed using TensorFlow and Keras. The architecture consists of an input layer,
three hidden layers, and a single output layer. Specifically, the network includes a first dense
layer with 256 units and Re LU activation, followed by a 30% dropout layer to prevent overfitting.
This is followed by a second dense layer with 128 units (Re LU), another 30% dropout, and a third
dense layer with 64 units (ReLU). The output layer consists of one neuron with a linear activation
function to perform regression.

This structure. is adapted from similar architectures applied in structural health monitoring
by (Ahmadzadeh et al., 2024) and in 3D point-cloud analysis for unstructured environments by
(Azhari et al., 2021). The use of RelLU ensures non-linearity in learning, while. dropout layers
enhance generalization by randomly deactivating nodes during training (Dong et al., 2024), (Do
et al., 2025).

Model Evaluation Metrics

The dataset was split into training and test sets with an 80:20 ratio using the
train_test_split method, consistent with best practice s in supervised machine learning (Jin et al.,
2023), (Bakshi & Chaudhary, 2024). Feature scaling was performed using StandardScaler from
Scikit-learn to normalize input data to zero mean and unit variance (Dong et al., 2024), (Kim et
al., 2024). The. model was compiled using the Adam optimizer and Mean Squared Error (MSE)
as the loss function, which is well-suite.d for continuous target prediction tasks.

Model training was conducted for a maximum of 200 epochs with a batch size of 64. To
mitigate overfitting, early stopping was applied with a patience of 20 epochs based on validation
loss monitoring, in accordance with recommendations from (Kim et al., 2024) and (Sorilla et al.,
2024) Additionally, 20% of the training data was reserved for internal validation during model
fitting.

Implementation Enviroment

All stages of data processing, model development, training, and evaluation were carried
out in the Python programming environment. Key libraries include Pandas and NumPy for data
manipulation, Scikit-learn for preprocessing and model evaluation, TensorFlow with Keras for
neural network development and training, and Matplotlib for visualization.

This implementation setup is consistent with prior research in structural integrity
prediction using deep learning, as demonstrated by (Dong et al., 2024), (Jin et al., 2023),and
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(Ahmadzadeh et al., 2024), providing a robust and flexible platform for machine learning
applications in structural engineering.

3. RESULTS AND DISCUSSIONS

This study utilized three distinct datasets derived from SAP2000 simulations to evaluate the
performance of the proposed Deep Neural Network (DNN) model in predicting joint reaction
force ratios. The results demonstrate that the DNN model consistently achieves high predictive
accuracy across all datasets, highlighting its robustne ss and ge neralization capabilities.

For the first dataset, the model reached a prediction accuracy of 99.73% within an error
tolerance of 5%, with an R2 score of 0.9976 indicating excellent goodness-of-fit. The mean
squared error (MSE) was recorded at 1.85, while. the mean absolute. error (MAE) and root mean
squared error (RMSE) were 1.01 and 1.36, respectively. These metrics reflect a low average
deviation between predicted and actual values, confirming the model's precision.
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Figure 2. Pedicted vs actual plot for dataset 1

The second dataset yielded a slightly lower accuracy of 99.08%, with an R2 score of
0.9961. The MSE increased to 2.89, while the MAE and RMSE values were 1.26 and 1.70,
respectively. Despite. the. marginal decrease. in performance. compared to the. first dataset, the
model still demonstrated strong predictive. ability, e ffectively capturing the nonlinear relationships
within the data.
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Figure 4. Pedicted vs actual plot for dataset 2

Notably, the third dataset produced the lowest accuracy among the three, achieving an
accuracy of 98.97% and an R2 score of 0.9915. The MSE rose to 5.11, with corresponding MAE
and RMSE values of 1.51 and 2.26, respectively. These results suggest that the relatively low
accuracy for the third dataset might be due to insufficient data quantity or an inade quate number
of training e pochs, preventing the DNN from fully learning the underlying patterns. Nevertheless,
the prediction results still demonstrate excellent performance, with nearly 99% accuracy and
relatively low errors, indicating that despite the limiting factors, the. DNN model remains highly
capable of producing accurate and practically acceptable predictions for structural analysis

applications.
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Figure 5. Learning curve of the DNN model for dataset 3
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The following table summarizes the performance metrics of the proposed DNN model
for each dataset tested:

Table 1. The performance of ...

Datase.t  Accuracy R Score. MSE. RMSE- MAE-
Datase.tl  99.73% 0.9976 1.85 1.36 1.01
Dataset2  99.08% 0.9961 2.89 1.70 1.26
Datase.t3  98.97% 0.9915 5.11 151 2.26

Based on the data presented in Table 1, the proposed DNN model consistently
demonstrates high accuracy and strong predictive performance across all three datasets, with
accuracy ranging from 98.97% to 99.73% and R2 scores exceeding 0.99 in each case. The mean
squared error (MSE), root mean squared error (RMSE), and mean absolute error (MAE) metrics
also indicate low prediction errors, confirming the model’s robustness. Overall, these results
confirm that the proposed DNN framework is highly effective for predicting joint reaction force
ratios in structural analysis. The low error metrics and high coefficient of determination across
varied datasets validate the model’s reliability and its potential application in practical structural
health monitoring and design optimization. Future. work could focus on expanding dataset
diversity and incorporating real-world experimental data to further enhance model robustness.

4. CONCLUSION
The Deep Neural Network (DNN) model developed in this study demonstrated excellent
performance in predicting joint reaction force ratios within structural analysis tasks. Using three
different datasets derived from SAP2000 simulations, the. model consistently achieved high
accuracy and low error metrics across all cases. The prediction accuracy remained above 98%,
with strong R2 scores indicating that the. model effectively captured the underlying relationships
in the data. Although the third dataset showed a slightly lower accuracy compared to the others,
this difference was marginal and still within an acce ptable range, likely influenced by factors such
as limited data size or insufficient training epochs. These results highlight the model's
robustness, generalization capability, and adaptability to datasets with varying complexities and
noise levels, which are. critical for real-world structural he alth monitoring and de sign optimization.
Overall, the findings confirm that the proposed DNN framework is reliable and effective
for structural engineering applications, offering precise. predictions that can support decision-
making processes. Future research should focus on expanding the diversity of datasets,
incorporating experimental and real-world data, and optimizing the. training process to further
enhance the model’s performance and applicability. This continuous improvement will contribute.
to more accurate and de pendable structural analysis tools in practical engine ering scenario.
Importantly, the results of this study can be directly utilized by civil engineering
practitioners who do not have expertise in machine learning. Since the DNN model operates on
input data already familiar to structural engineers such as load combinations and joint force
components it can be integrated into a simplified application or plugin. This allows engineers to
benefit from rapid and accurate predictions without needing to understand or interact with the
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underlying algorithm. Thus, this research not only demonstrates the predictive potential of Al in
structural design but also offers practical accessibility for day to day engineering decision making
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