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This study introduces a Convolutional Neural Network with an Attention 
Mechanism (CNN+AM), utilizing the Squeeze-and-Excitation (SE) 
block, to classify critical ship components: generators, engines, and oil-
water separators (OWS). The SE block enhances the model's ability to 
focus on discriminative features, thereby improving classification 
performance. To overcome the limitation of the original dataset, which 
contained only 199 images, extensive data augmentation techniques 
were applied, expanding the dataset to 2,648 images. The augmented 
dataset was divided into training (70%), validation (15%), and testing 
(15%) sets to ensure reliable evaluation. Experimental results show that 
the CNN-AM achieved an accuracy of 72.39%, surpassing the baseline 
CNN model with 68.16%. These findings confirm that the attention 
mechanism significantly improves generalization and the ability to 
differentiate visually similar classes. Furthermore, the integration of 
interpretability tools, such as Gradient-weighted Class Activation 
Mapping (Grad-CAM), provides visual explanations of model 
predictions, increasing trust and reliability for safety-critical maritime 
applications. The proposed approach demonstrates strong potential for 
real-time ship component monitoring, offering meaningful contributions 
to predictive maintenance and operational safety within the maritime 
industry. 
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1. INTRODUCTION 
In the maritime industry, the accurate classification of machinery such as generators, engines, and 
oil-water separators (OWS) is crucial for efficient maintenance, operational decision-making, and 
ensuring safety compliance(Sardar, 2024)(Lee et al., 2023). Traditional methods of identifying and 
classifying these components often rely on manual inspection, which is time-consuming, prone to 
human error, and heavily dependent on the availability of expert personnel. The advancement of 
deep learning techniques, particularly automated image classification, offers a promising solution to 
streamline this process and enhance its reliability(Beyer et al., 2022)(Sharma & Kumar, 2024). 

However, applying deep learning to maritime machinery classification presents several 
challenges. A primary obstacle is the limited availability of labeled datasets. This scarcity of data can 
hinder the training of robust and generalizable models. Furthermore, classifying maritime machinery 
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often requires discerning subtle visual differences between similar components—a task known as 
fine-grained image classification(Mahadevkar et al., 2022). These components may share 
overlapping visual features, making accurate differentiation difficult. However, there is still a lack of 
automated, explainable, and robust classification models specifically designed for maritime 
machinery images, which often leads to inefficient maintenance and operational delays. This 
research aims to address this gap by proposing an improved deep learning approach 

This study addresses these challenges by exploring and comparing the performance of 
machine learning architectures for maritime machinery image classification: CNN  and 
CNN+Attention Mechanism (CNN+AM)(Mohiuddin et al., 2023). The CNN model serves as a 
baseline, utilizing traditional convolutional feature extraction. To further enhance performance and 
mitigate the limitations of a small dataset, we employ data augmentation strategies to artificially 
expand the training data, increasing the model's robustness and applicability (da Costa et al., 2020). 
Finally, we incorporate attention mechanisms into the baseline CNN (CNN+AM) to enhance 
interpretability by highlighting the image regions that contribute most significantly to the classification 
decision. The primary objective of this study is to evaluate whether the integration of attention 
mechanisms and data augmentation can improve classification performance and explainability 
compared to a baseline CNN model. 

The novelty of this study lies in combining a CNN model with a Squeeze-and-Excitation (SE) 
attention mechanism for fine-grained classification of ship components, a domain that has received 
little attention in prior research. Moreover, the use of Grad-CAM for visual interpretability provides 
practical insights that enhance trust in AI-based maritime applications. Deep learning has 
transformed image classification in many fields, including industrial and maritime 
applications(Theodoropoulos et al., 2021). CNN have been widely adopted because they can learn 
hierarchical features from images (Sarvamangala et al., 2065).  

Interpretability in deep learning has garnered increasing attention, with techniques such as 
Gradient-weighted Class Activation Mapping (Grad-CAM) providing visual explanations for model 
predictions(Morbidelli et al., 2020). Demonstrated the utility of Grad-CAM in highlighting critical 
regions that influence decision-making in CNNs, fostering trust and reliability in AI systems(Selvaraju 
et al., 2016). Grad-CAM technique investigates how a prediction is formed, focusing on the outputs 
of the last convolutional layer. Each prediction involves a weighted aggregation of the feature maps 
to highlight the key regions in the original image that truly drove the model's output (Moujahid et al., 
2022). 

In the maritime domain, studies on machinery classification remain limited. Prior works have 
focused on fault detection in ship engines (Wang et al., 2023) and predictive maintenance using 
sensor data (Shang et al., 2022). Ships require automated spare-part management to operate safely 
(Lee et al., 2023). The remainder of this paper is organized as follows: Section 2 reviews related 
works and the theoretical foundation of CNN and attention mechanisms. Section 3 describes the 
dataset, data augmentation strategies, and the proposed CNN+AM model. Section 4 presents the 
experimental results and analysis. Finally, Section 5 concludes the study and outlines future 
research directions. 

2. RESEARCH METHOD 
The dataset used in this research was created from original images of key maritime machinery 
components, encompassing three classes: generators, engines, and oil-water separators (OWS). 
The original dataset consisted of 80 images of generators, 85 images of engines, and 34 images of 
OWS. All images were resized into  224x224 pixels. To address the limitations posed by this 
relatively small original dataset and to enhance the generalization capabilities of the trained models, 
a comprehensive data augmentation strategy was implemented(Xu et al., 2023). This strategy 
included a range of geometric and photometric transformations. Input space data augmentation 
techniques refer to methods that involve directly altering the input image (or its components) to 
introduce variability, thereby enhancing the model's ability to generalize(Mumuni & Mumuni, 2022). 
The geometric transformations applied were random rotations (between 0° and 360°), horizontal and 
vertical flips, random scaling (within ±10%), random translations (within ±10% of image dimensions), 
and random shearing (within ±5 degrees). The photometric transformations consisted of random 
adjustments to brightness, contrast, and saturation (each within ±20%), as well as the addition of 
Gaussian noise. These augmentations were applied multiple times to each original image, resulting 
in a significantly expanded dataset. The final augmented dataset consisted of 2648 images, which 
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were then split into training, validation, and testing sets with  70%, 15%, and 15% split. Table 1 
summarizes the dataset composition before and after augmentation.  
 

Tabel l. Dataset Compostition 

Class Original  Augmented  
Train 
(70%) 

Val 
(15%) 

Test 
(15%) 

Generators 80 924 647 139 138 
Engines 85 966 676 145 145 

OWS 34 758 531 114 113 

 
The three classes in the dataset exhibit considerable visual similarity, particularly between 

engines and generators. This close resemblance posed a significant challenge for several 
established methods; this research proposes a novel CNN model enhanced with an attention 
mechanism to address this fine-grained classification problem. This attention mechanism is 
designed to enable model to focus on the most discriminative features at images, which enhances 
its capacity to differentiate between visually similar maritime machinery classes, the baseline CNN 
architecture consists of three convolutional layers with 32, 64, and 128 filters, each using a kernel 
size of 3×3 and ReLU activation. Max-pooling layers with a 2×2 window follow each convolutional 
block to reduce spatial dimensions. The flattened output is connected to two fully connected layers 
with 128 and 64 neurons, respectively, followed by a dropout layer (rate 0.5) to prevent overfitting. 
The final output layer uses a Softmax activation function with three neurons corresponding to the 
classes (generators, engines, OWS).  Figure 1 depicts randomly selected images from the dataset, 
representing generator, engine, and oil water separator (OWS) and Tabel 2 describes information 
and implementation detail for classification of marine equipment, the models were trained for 50 
epochs with a batch size of 32. The Adam optimizer was used with an initial learning rate of 0.001, 
and the categorical cross-entropy loss function was applied to handle multi-class classification. Early 
stopping with a patience of 5 epochs was employed to avoid overfitting. 

 

Figure 1 Example of randomly selected images from the dataset, representing generator, engine, and oil water 
separator (OWS) 

 
Tabel 2. Information and implementation detail  

Content  Description 

Method Use CNN + Attention Mechanism 
Volume of Dataset 2684 
Implementation Python 
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Image Resolution in pixels 224 x 224 

2.1 CNN 
CNNs are form of neural network primarily used for image data processing and classification. 

CNN excels at tasks like image classification & object detection becuase CNN ability to automatically 
learn spatial hierarchies of features within images 
 
Convolution Layer 

Convolution layer uses kernels to extract features from input images. 

 

𝑂(𝑖, 𝑗) =  ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛). 𝐾(𝑚, 𝑛) + 𝑏                                               (1)

𝑁

𝑛=1

𝑀

𝑚=1

  

Notation used in this process: I(i,j) represents the input pixel value at coordinates (i,j). K(m,n) 
represents the kernel value at (m,n) position. b denotes bias term, which is added to the result of the 
convolution. O(i,j) represents the output after the convolution operation (feature map). 
 
Strides and padding can affect the output size. 

In image processing, particularly within convolutional operations, the output size of a feature 
map is affected by several factors, including the input image size (Isize), the kernel size (Ksize), padding 
(P), and stride (S). The relationship between these factors determines the spatial dimensions of the 
resulting output(Z. Zhang & Peng, n.d.). Specifically, the stride dictates how many pixels the kernel 
shifts with each step, both horizontally and vertically. A larger stride leads to a smaller output size 
because the kernel covers less of the input image. Padding, on the other hand, adds extra pixels 
around the border of the input image. This can be crucial for controlling the output size.  

𝑂𝑠𝑖𝑧𝑒 =  
(𝐼𝑠𝑖𝑧𝑒− 𝐾𝑠𝑖𝑧𝑒+2𝑃)

𝑆
+ 1                                                                                        (2) 

Activation Function 
Typically, activation functions such as ReLU(Hayou et al., n.d.)  

(𝑓(𝑥) =  max(𝑜, 𝑥))                                                                                                   (3) 
are used to add non-linearity. 
 

Pooling Layer 
Pooling layers in CNNs are responsible for reducing the spatial size of feature maps (Akhtar 

& Ragavendran, 2020). Two main types exist: Max Pooling takes the maximum value from each 
small patch, retaining prominent features and being robust to minor input 
variations(Gholamalinezhad & Khosravi, n.d.)(Zafar et al., 2022). Average Pooling averages each 
patch, providing smoother down sampling and capturing more general features. Both reduce 
parameters and computation, speeding up training and expanding the receptive field. Max Pooling 
is generally preferred for its often-superior performance. 

𝑂𝑝𝑜𝑜𝑙 =  𝑚𝑎𝑥 𝑎𝑣𝑔(𝐼𝑝𝑎𝑡𝑐ℎ)⁄                                                                        (4) 

Fully Connected Layer 
In this layer, the data is flattened and continued with dot product operations to produce the 

final output(Kossaifi et al., 2020). 
𝑦 = 𝑊. 𝑥 + 𝑏                                                                                         (5) 

In a fully connected layer of a neural network, the output (y) is computed through a linear 
transformation of the input (x) using a weight matrix (W) and a bias vector (b) 
Loss Function 

For classification tasks, a commonly used loss function is categorical cross-entropy(Damrich 
& Hamprecht, n.d.)(Li et al., n.d.): 

𝐿𝑜𝑠𝑠 =  − ∑ 𝑦𝑖 .

𝐶

𝑖−1

log ( ŷ𝑖)                                                                                   (6) 

Where C is number of classes, yi is actual label value (0 or 1), and ŷi is model prediction probability 
Backpropagation and Optimization 



Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online)  

 

Luky Fabrianto, Attention-based convolutional neural networks for interpretable classification of maritime 
equipment 

161 

The parameters (kernel/weights and bias) are optimized using algorithms such as Gradient 
Descent: 

𝜃 =  𝜃 −  η . ∇𝜃ℒ                                                                                     (7) 

In machine learning, we adjust model parameters (θ) to minimize a loss function (ℒ). Gradient 

descent is a common method where we calculate the gradient of the loss (∇𝜃ℒ), which points 
towar`ds increasing loss. We move in the opposite direction to decrease loss. The learning rate (η) 
controls the step size of this movement.  
2.2 The Squeeze-And-Excitation Attention Mechanism 

The basic formulas of a CNN remain unchanged even with the addition of an attention 
mechanism. The attention mechanism enhances the network by assigning weights to features 
produced by CNN layers, helping the model concentrate on the most important features for 
classification tasks (Y. Zhang et al., n.d.)(M. Zhang et al., n.d.). Below is an explanation of how the 
attention mechanism, specifically the Squeeze-and-Excitation (SE) block, it is integrated into a CNN. 
Feature Extraction with CNN 

Initially, the image input is processed through standard CNN layers such as convolution, 
activation (e.g., ReLU), and pooling (e.g., Max or Average Pooling) to extract feature maps. The 
fundamental convolution, activation, and pooling equations are the same as in a standard CNN. 
Attention Mechanism: SE Block 
1. Squeeze Operation 
The spatial dimensions of the feature map are reduced to channel descriptors via global average 
pooling, calculated as:  

𝑧𝑐 =  
1

𝐻 x 𝑊
 ∑ ∑ 𝑋(𝑖, 𝑗, 𝑐)𝑊

𝑗=1
𝐻
𝑖=1                                                                     (8) 

Here, 𝑧𝑐 is the global context for channel c1 H and W are the height and width of the feature map, 
and 𝑋(𝑖, 𝑗, 𝑐) represents the feature map value at position (𝑖, 𝑗) in channel c. The result is a vector z 

∈ ℝC summarizing the global information of each channel. 
2. Excitation Operation 
The squeezed descriptor z is passed through two fully connected (FC) layers with ReLU and sigmoid 
activations: 

𝑠 =  𝜎 (𝑊2𝛿(𝑊1𝑧))                                                                                      (9) 

Here, W1∈ℝ
𝐶

𝑟
 x𝐶  and W2∈ℝ

𝐶

𝑟
 x𝐶   are the weight matrices for the FC layers, δ represents the ReLU 

activation, σ is the sigmoid function, and r is a reduction ratio (e.g., r=16). This process learns 
attention weights s ∈ ℝC, indicating the importance of each channel. 
3. Scale Operation 
The original feature map X is scaled using the learned attention weights s via element-wise 
multiplication: 

X′=X⋅s                                                                                                       (10) 

Here, each channel in the feature map is multiplied by its corresponding weight, emphasizing 
channels with higher relevance. 
4. Subsequent Layers 
The scaled feature map X′ is then processed through additional CNN layers, including further 
convolution, pooling, flattening, and fully connected layers for classification. The equations for these 
operations remain the same as in a standard CNN. 

2.3 Evaluation 
The confusion matrix offers a more detailed analysis by organizing predictions into a tabular 

format(Krstinić et al., 2020)(Markoulidakis YannisMarkoulidakis & Kopsiaftis, 2021). For multi-class 
classification, the confusion matrix extends to a K x K matrix, where K is the number of classes, with 
diagonal elements representing correct predictions for each class. It contains four key metrics: TP, 
TN, FP, and FN. Accuracy tells us the percentage of correct predictions a model makes from all 
predictions, calculated as the sum of True Positives (TP) and True Negatives (TN) divided by the 
total number of predictions, including False Positives (FP) and False Negatives (FN). It delivers a 
simple measure of overall correctness but may not fully reflect performance on imbalanced datasets. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                                                                                         (11) 

 𝑷𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 (𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑣𝑒 𝑉𝑎𝑙𝑢𝑒) =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                             (12) 
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𝑹𝒆𝒄𝒂𝒍𝒍 (𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑜𝑟 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                             (13) 

𝐹1 − 𝑆𝑐𝑜𝑟𝑒 = 2.
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛.𝑅𝑒𝑐𝑎𝑙𝑙 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                                                                    (14) 

 

2.4 Grad-Cam 
To understand what parts within image a CNN finds most important, we use a technique 

called Gradient-weighted Class Activation Mapping (Grad-CAM) to make a specific prediction. It 
works by calculating the gradients of the class score with respect to the activations of the final 
convolutional layer(Morbidelli et al., 2020)(Polytechnic et al., n.d.). These gradients highlight the 
image regions most critical to the model's decision (Chen et al., n.d.)(Chakraborty et al., 2022). By 
visualizing these gradients as a heatmap overlaid on the original image, we can see which regions 
the CNN is focusing on to make its prediction. This provides insight into how the model makes its 
decisions and gain insights into its strengths and weaknesses. All experiments were conducted on 
a laptop equipped with an Intel Core i5-10300H CPU, 16GB RAM, and an NVIDIA GeForce MX250 
GPU (2GB). The models were implemented using Python 3.10, TensorFlow 2.13, and Keras, with 
supporting libraries such as NumPy, OpenCV, and Matplotlib. 

3. RESULTS AND DISCUSSIONS  
This study evaluated the performance of a baseline Convolutional Neural Network (CNN) and an 
enhanced CNN with Squeeze-and-Excitation attention blocks (CNN+AM) for classifying three 
categories of ship machinery: generators, engines, and oil-water separators (OWS). The dataset, 
consisting of 199 original images, was expanded to 2,648 images using geometric and photometric 
data augmentation to address overfitting and improve generalization. Both models were developed 
in Python with TensorFlow and trained using a fixed split of 70% training, 15% validation, and 15% 
testing sets. As this research focused on accuracy and confusion matrix metrics, cross-validation 
was not employed. The baseline CNN achieved an accuracy of 68%, while the CNN+AM model 
achieved 72%, indicating that the addition of attention mechanisms enhances the ability to extract 
discriminative features in fine-grained classification tasks. The confusion matrix revealed that most 
misclassifications occurred between generators and engines, which share similar shapes, metallic 
textures, and component layouts. Variations in lighting, image angles, and background clutter also 
contributed to these errors, highlighting the inherent challenge of distinguishing between visually 
similar machinery components. 

To the best of our knowledge, no previous studies have applied image-based classification 
to this private maritime machinery dataset, making direct quantitative comparisons with other 
research unfeasible. However, our findings are consistent with results from similar industrial and 
mechanical image classification domains, where attention-enhanced models have shown superior 
performance in distinguishing visually similar classes. The novelty of this research lies in its 
application of CNN+AM to a dataset that has not been explored before, demonstrating its potential 
for reliable, automated classification in maritime settings. Although cross-validation and statistical 
significance tests such as t-tests or ANOVA were not applied in this study, the consistent 
performance improvements observed in the confusion matrix support the robustness of the 
CNN+AM approach. Future work will focus on expanding the dataset, performing statistical 
validation, and incorporating interpretability methods like Grad-CAM to provide deeper insights into 
model decision-making and to further reduce classification errors. 
3.1 CNN Implementation 

The layer expects images of size 224x224 pixels with 3 color channels (RGB). It uses 32 
filters (Channels), kernel size 3x3 grid, to scan the image and extract features. After each scan, it 
applies a ReLU activation function.  

𝑂(𝑖, 𝑗, 𝑘) = ∑ ∑ ∑ 𝐼(𝑖 + 𝑚, 𝑗 + 𝑛, 𝑐). 𝐾(𝑚, 𝑛, 𝑐, 𝑘) + 𝑏𝑘

3

𝑐=1

3

𝑛=1

3

𝑚=1

                   (15) 

O(i,j,k) represents the output value at a specific location (i,j) in the output feature map for channel k. 
I(i,j,c) is the input pixel value at location (i,j) for input channel c. K(m,n,c,k) denotes the kernel (or 
filter) values; it's a 3x3x3 tensor connecting input channel c to output channel k. Finally, bk is a bias 
term added to each output channel k.  
The output feature map is passed through the ReLU activation function: (𝑓(𝑥) = max(𝑜, 𝑥)) 
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It shrinks the size of the data by looking at 2x2 blocks of values and keeping only the 
largest value in each block. Because it moves in steps of 2 (stride of 2), the output is half the size of 
the input in both height and width. 

𝑂𝑝𝑜𝑜𝑙(𝑖, 𝑗, 𝑘) =  [𝑂(𝑖 + 𝑝, 𝑗 + 𝑞, 𝑘)]𝑝,𝑞∈patch
𝑚𝑎𝑥                                                    (16) 

The formulas remain the same as the first convolutional layer, but the number of filters increases to 
64 and 128, respectively.  
Layer 2: Conv2D(64, (3, 3), activation='relu') 
Layer 3: Conv2D(128, (3, 3), activation='relu') 

The spatial dimensions are flattened into a 1D vector. For example, if the output from the last 
convolution is (28 x 28 x128), flattening converts it into: flattened output ∈ ℝ28.28.128 
Flattened input vector of size 100352 (resulting from flattening a previous layer's output, perhaps of 
shape 28x28x128). Each of the 100352 inputs is connected to each of the 128 neurons.  

𝑦𝑗 = ∑ 𝑥𝑖 . 𝑊𝑖𝑗 + 𝑏𝑗

𝑁

𝑖=1

                                                                                      (17) 

These notations describe how a fully connected layer (or Dense layer) computes its output. 
yj represents the output value of neuron j. xi is the input value from neuron i. Wij is the weight 
connecting input neuron i to output neuron j. bj is the bias term for output neuron j. The output is 
passed through the ReLU activation function: (𝑓(𝑥) = max(0, 𝑥)). Dropout randomly disables 50% 
of neurons to prevent overfitting. 

The final layer of a classification neural network is the output layer. A Dense (fully 
connected) layer where the number of output neurons is equal to the number of classes the network 
is trying to predict C. SoftMax activation function converts the raw outputs of the neurons into a 
probability distribution over the classes, where each output is a value between 0 and 1. 

ŷ𝑖 =  
exp (𝑧𝑖)

∑ exp (𝑧𝑗 
𝐶
𝑗=1 )

                                                                                            (18) 

Where, zi is output of the last layer for class i and ŷ𝑖 is Predicted probability for class i. 
Categorical cross entropy is a loss function commonly used in multi-class classification 

problems where the labels are one-hot encoded (meaning each sample's label is represented as a 
vector where all elements are 0 except for a 1 at the index corresponding to the correct class). 

ℒ =  − ∑ 𝑦𝑖 .

𝐶

𝑖−1

log ( ŷ𝑖)                                                                                            (19) 

Here, 𝑦𝑖 is True label for class i (1 for correct class, 0 otherwise) and ŷ𝑖 is Predicted probability for 
class i. 
Optimization, Adam optimizer updates the weights using: 

𝜃 =  𝜃 −  η .
𝑚𝑡

√𝑣𝑡  + ∈
                                                                                              (20) 

in the context of training neural networks, θ represents the model's parameters (weights and biases) 
that are adjusted to minimize the loss. η is the learning rate, controls the size of these adjustments 

at each step. To improve the optimization process, techniques like momentum 𝑚𝑡 and RMSProp 𝑣𝑡 
are often used. A constant ϵ is added to avoid division by zero o during calculations. 
3.2 Attention Block SE (Squeeze-and-Excitation) 

First, Global Average Pooling (Squeeze) 

𝐺𝐴𝑃 (𝑘) =  
1

𝐻 x 𝑊
 ∑ ∑ 𝑂(2)(𝑖, 𝑗, 𝑘)                                                           (21)

𝑊

𝑗=1

𝐻

𝑖=1

 

Here output dimension is 64. 
Second, Fully Connected Layer 1 (Reduction), 

𝑆𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑘) =  𝑅𝑒𝐿𝑈 (𝑊𝑟𝑒𝑑𝑢𝑐𝑒𝑑 . 𝐺𝐴𝑃(𝑘) + 𝑏𝑟𝑒𝑑𝑢𝑐𝑒𝑑)                               (22) 

Wreduced ∈ ℝ64x4 (64 channels reduced by ratio of 16) and output dimension is 4. 
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Third, Fully Connected Layer 2 (Expansion) 

𝑆𝐸𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑(𝑘) =  𝑆𝑖𝑔𝑚𝑜𝑖𝑑 (𝑊𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑 . 𝑆𝐸𝑟𝑒𝑑𝑢𝑐𝑒𝑑(𝑘) + 𝑏𝑟𝑒𝑑𝑢𝑐𝑒𝑑)           (23) 

Wexpanded ∈ ℝ4x64 output dimension is 64. 
Fourth, Channel-wise Multiplication (Excitation) 

𝑂𝑆𝐸
(2)(𝑖, 𝑗, 𝑘) =  𝑂(2) (𝑖, 𝑗, 𝑘). 𝑆𝐸𝑒𝑥𝑝𝑎𝑛𝑑𝑒𝑑(𝑘)                                                 (24) 

Final output dimensions: (112x112x64) 

3.3 Model with Attention Block (CNN+AM) 
The network begins with an input tensor X of shape 224x224x3, representing an RGB 

image. This input is then processed using multiple convolutional and pooling layers. The first 
convolutional block (Conv Block 1) applies 32 filters of size 3x3 with ReLU activation and 'same' 
padding, followed by max pooling with a 2x2 kernel, resulting in an output of 112x112x32. The 
second convolutional block (Conv Block 2) uses 64 filters with the same configuration, producing an 
output of 112x112x64. An attention mechanism (Squeeze-and-Excitation block) is then applied, 
consisting of global average pooling (squeezing to 64), a dense layer reducing dimensionality to 4, 
another dense layer expanding back to 64, and finally, channel-wise multiplication (excitation), 
maintaining the 112x112x64 output shape. Another max pooling layer reduces the dimensions to 
56x56x64. A third convolutional block (Conv Block 3), similar to the previous ones but with 128 filters, 
is followed by another Squeeze-and-Excitation block operating on 128 channels, resulting in a 
28x28x128 output. The tensor is then flattened to a vector of size 28 * 28 * 128. This flattened vector 
is fed into a dense layer with 128 neurons and ReLU activation, producing a 128-dimensional output. 
A dropout layer with a 50% dropout rate is applied. Finally, the output layer consists of a dense layer 
with num_classes neurons and SoftMax activation, producing the final classification output of size 
num_classes. Figure 2 and 3 are diagram of CNN and CNN with attention mechanism architecture. 

 
Figure 2 Baseline CNN architecture 
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Figure 3 CNN with attention mechanism architecture 

 

3.4 Experimental Result 
The metrics used are precision, recall, f1-score, and accuracy, confusion metrics (CF). The 

results show that the CNN+Attention mechanism model outperforms the standard CNN across all 
evaluated metrics as shown at Tabel  3. Compare with Tabel 4. CNN Baseline.  

Tabel 3.  CNN + Attention mechanism Confusion metric 
 

Tabel 4.  Baseline CNN Confusion metric 

  Generator Engine OWS    Generator Engine OWS 

Generator 98 28 12 
 

Generator 84 36 16 

Engine 35 108 6 
 

Engine 33 108 8 

OWS 25 4 85 
 

OWS 24 8 82 

 
This demonstrates that incorporating the attention mechanism leads to a noticeable 

improvement in the model's classification accuracy and balance precision and recall. The additional 
data provided alongside the main comparison table seems to detail the count of correct and incorrect 
classifications per class (Generator, Engine, OWS) by each model. In these details also, CNN+AM 
consistently has better classification counts compared to CNN. Tabel 5. is result recapitulation. 
 

Tabel 5. Recapitulation result  

  precision recall f1-score accuracy 

CNN 68.36% 68.16% 68.22% 68.16% 

CNN+AM 73.24% 72.39% 72.64% 72.39% 

 

The Grad-CAM results show heatmaps overlayed on the original images to highlight the 
region’s most critical in the model's predictions. Using the "multiply_3" layer, the Grad-CAM 
effectively focuses on critical features in each image as shown at figure 4. The overlay was created 
with a blending method (cv2.addWeighted) combining the original images (weighted at 0.8) and the 
Grad-CAM heatmaps (also weighted at 0.8), providing clear visualization of the model's areas of 
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attention. Figure 4 is an interpretation of the Grad-CAM results which shows areas of concern in 
classification These visualizations validate that the model identifies relevant details specific to the 
input data. 

 

Figure 4 Grad-Cam result 

4. CONCLUSION 
This study demonstrates the effectiveness of integrating the SE block into a CNN for classifying ship 
components—Generators, Engines, and Oil-Water Separators—achieving a 4% accuracy 
improvement (68% to 72%) over the baseline CNN. Misclassifications, especially between 
generators and engines, arise from their high visual similarity, indicating the need for larger datasets, 
advanced attention mechanisms, and fine-grained feature extraction in future work. Grad-CAM 
visualizations confirmed that CNN-AM focuses on distinctive structural features, enhancing 
interpretability and reliability. Although direct comparisons with prior studies are limited due to the 
novelty of this private dataset, the findings align with trends in industrial image classification where 
attention-based models outperform conventional CNNs. Practically, this model can support 
automated maritime inspections, with potential improvements through real-time optimization 
techniques such as pruning, quantization, and enhanced explainability for safety-critical applications. 
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