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This study introduces a Convolutional Neural Network with an Attention
Mechanism (CNN+AM), utilizing the Squeeze-and-Excitation (SE)
block, to classify critical ship components: generators, engines, and oil-
water separators (OWS). The SE block enhances the model's ability to
focus on discriminative features, thereby improving classification
performance. To overcome the limitation of the original dataset, which
contained only 199 images, extensive data augmentation techniques
were applied, expanding the dataset to 2,648 images. The augmented
dataset was divided into training (70%), validation (15%), and testing
(15%) sets to ensure reliable evaluation. Experimental results show that
the CNN-AM achieved an accuracy of 72.39%, surpassing the baseline
CNN model with 68.16%. These findings confirm that the attention
mechanism significantly improves generalization and the ability to
differentiate visually similar classes. Furthermore, the integration of
interpretability tools, such as Gradient-weighted Class Activation
Mapping (Grad-CAM), provides visual explanations of model
predictions, increasing trust and reliability for safety-critical maritime
applications. The proposed approach demonstrates strong potential for
real-time ship component monitoring, offering meaningful contributions
to predictive maintenance and operational safety within the maritime
industry.
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1. INTRODUCTION

In the maritime industry, the accurate classification of machinery such as generators, engines, and
oil-water separators (OWS) is crucial for efficient maintenance, operational decision-making, and
ensuring safety compliance(Sardar, 2024)(Lee et al., 2023). Traditional methods of identifying and
classifying these components often rely on manual inspection, which is time-consuming, prone to
human error, and heavily dependent on the availability of expert personnel. The advancement of
deep learning techniques, particularly automated image classification, offers a promising solution to
streamline this process and enhance its reliability(Beyer et al., 2022)(Sharma & Kumar, 2024).
However, applying deep learning to maritime machinery classification presents several
challenges. A primary obstacle is the limited availability of labeled datasets. This scarcity of data can
hinder the training of robust and generalizable models. Furthermore, classifying maritime machinery
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often requires discerning subtle visual differences between similar components—a task known as
fine-grained image classification(Mahadevkar et al., 2022). These components may share
overlapping visual features, making accurate differentiation difficult. However, there is still a lack of
automated, explainable, and robust classification models specifically designed for maritime
machinery images, which often leads to inefficient maintenance and operational delays. This
research aims to address this gap by proposing an improved deep learning approach

This study addresses these challenges by exploring and comparing the performance of
machine learning architectures for maritime machinery image classification: CNN  and
CNN+Attention Mechanism (CNN+AM)(Mohiuddin et al., 2023). The CNN model serves as a
baseline, utilizing traditional convolutional feature extraction. To further enhance performance and
mitigate the limitations of a small dataset, we employ data augmentation strategies to artificially
expand the training data, increasing the model's robustness and applicability (da Costa et al., 2020).
Finally, we incorporate attention mechanisms into the baseline CNN (CNN+AM) to enhance
interpretability by highlighting the image regions that contribute most significantly to the classification
decision. The primary objective of this study is to evaluate whether the integration of attention
mechanisms and data augmentation can improve classification performance and explainability
compared to a baseline CNN model.

The novelty of this study lies in combining a CNN model with a Squeeze-and-Excitation (SE)
attention mechanism for fine-grained classification of ship components, a domain that has received
little attention in prior research. Moreover, the use of Grad-CAM for visual interpretability provides
practical insights that enhance trust in Al-based maritime applications. Deep learning has
transformed image classification in many fields, including industrial and maritime
applications(Theodoropoulos et al., 2021). CNN have been widely adopted because they can learn
hierarchical features from images (Sarvamangala et al., 2065).

Interpretability in deep learning has garnered increasing attention, with techniques such as
Gradient-weighted Class Activation Mapping (Grad-CAM) providing visual explanations for model
predictions(Morbidelli et al., 2020). Demonstrated the utility of Grad-CAM in highlighting critical
regions that influence decision-making in CNNs, fostering trust and reliability in Al systems(Selvaraju
et al., 2016). Grad-CAM technique investigates how a prediction is formed, focusing on the outputs
of the last convolutional layer. Each prediction involves a weighted aggregation of the feature maps
to highlight the key regions in the original image that truly drove the model's output (Moujahid et al.,
2022).

In the maritime domain, studies on machinery classification remain limited. Prior works have
focused on fault detection in ship engines (Wang et al., 2023) and predictive maintenance using
sensor data (Shang et al., 2022). Ships require automated spare-part management to operate safely
(Lee et al., 2023). The remainder of this paper is organized as follows: Section 2 reviews related
works and the theoretical foundation of CNN and attention mechanisms. Section 3 describes the
dataset, data augmentation strategies, and the proposed CNN+AM model. Section 4 presents the
experimental results and analysis. Finally, Section 5 concludes the study and outlines future
research directions.

2. RESEARCH METHOD

The dataset used in this research was created from original images of key maritime machinery
components, encompassing three classes: generators, engines, and oil-water separators (OWS).
The original dataset consisted of 80 images of generators, 85 images of engines, and 34 images of
OWS. All images were resized into 224x224 pixels. To address the limitations posed by this
relatively small original dataset and to enhance the generalization capabilities of the trained models,
a comprehensive data augmentation strategy was implemented(Xu et al., 2023). This strategy
included a range of geometric and photometric transformations. Input space data augmentation
techniques refer to methods that involve directly altering the input image (or its components) to
introduce variability, thereby enhancing the model's ability to generalize(Mumuni & Mumuni, 2022).
The geometric transformations applied were random rotations (between 0° and 360°), horizontal and
vertical flips, random scaling (within £10%), random translations (within £10% of image dimensions),
and random shearing (within +5 degrees). The photometric transformations consisted of random
adjustments to brightness, contrast, and saturation (each within +20%), as well as the addition of
Gaussian noise. These augmentations were applied multiple times to each original image, resulting
in a significantly expanded dataset. The final augmented dataset consisted of 2648 images, which
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were then split into training, validation, and testing sets with 70%, 15%, and 15% split. Table 1
summarizes the dataset composition before and after augmentation.

Tabel |I. Dataset Compostition
Train Val Test

Class Original  Augmented (70%) (15%)  (15%)
Generators 80 924 647 139 138
Engines 85 966 676 145 145
[ON'S] 34 758 531 114 113

The three classes in the dataset exhibit considerable visual similarity, particularly between
engines and generators. This close resemblance posed a significant challenge for several
established methods; this research proposes a novel CNN model enhanced with an attention
mechanism to address this fine-grained classification problem. This attention mechanism is
designed to enable model to focus on the most discriminative features at images, which enhances
its capacity to differentiate between visually similar maritime machinery classes, the baseline CNN
architecture consists of three convolutional layers with 32, 64, and 128 filters, each using a kernel
size of 3x3 and ReLU activation. Max-pooling layers with a 2x2 window follow each convolutional
block to reduce spatial dimensions. The flattened output is connected to two fully connected layers
with 128 and 64 neurons, respectively, followed by a dropout layer (rate 0.5) to prevent overfitting.
The final output layer uses a Softmax activation function with three neurons corresponding to the
classes (generators, engines, OWS). Figure 1 depicts randomly selected images from the dataset,
representing generator, engine, and oil water separator (OWS) and Tabel 2 describes information
and implementation detail for classification of marine equipment, the models were trained for 50
epochs with a batch size of 32. The Adam optimizer was used with an initial learning rate of 0.001,
and the categorical cross-entropy loss function was applied to handle multi-class classification. Early
stopping with a patience of 5 epochs was employed to avoid overfitting.

gen841.jpg gen857.jpg gen974.jpg

ows353.jpg

Figure 1 Example of randomly selected images from the dataset, representing generator, engine, and oil water
separator (OWS)

Tabel 2. Information and implementation detail

Content Description
Method Use CNN + Attention Mechanism
Volume of Dataset 2684
Implementation Python
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Image Resolution in pixels 224 x 224

2.1 CNN

CNNs are form of neural network primarily used for image data processing and classification.
CNN excels at tasks like image classification & object detection becuase CNN ability to automatically
learn spatial hierarchies of features within images

Convolution Layer
Convolution layer uses kernels to extract features from input images.

0@, ) = Z Zl(i+m,j+n).l((m,n)+b )

m=1n=1

Notation used in this process: I(ij) represents the input pixel value at coordinates (ij). K(m,n)
represents the kernel value at (m,n) position. b denotes bias term, which is added to the result of the
convolution. O(i,j) represents the output after the convolution operation (feature map).

Strides and padding can affect the output size.

In image processing, particularly within convolutional operations, the output size of a feature
map is affected by several factors, including the input image size (/siz¢), the kernel size (Ksiz), padding
(P), and stride (S). The relationship between these factors determines the spatial dimensions of the
resulting output(Z. Zhang & Peng, n.d.). Specifically, the stride dictates how many pixels the kernel
shifts with each step, both horizontally and vertically. A larger stride leads to a smaller output size
because the kernel covers less of the input image. Padding, on the other hand, adds extra pixels
around the border of the input image. This can be crucial for controlling the output size.

OSize — (Usize— Iisize+2P) +1 (2)

Activation Function
Typically, activation functions such as ReLU(Hayou et al., n.d.)
(f (x) = max(o,x)) 3)

are used to add non-linearity.

Pooling Layer
Pooling layers in CNNs are responsible for reducing the spatial size of feature maps (Akhtar
& Ragavendran, 2020). Two main types exist: Max Pooling takes the maximum value from each
small  patch, retaining prominent features and being robust to minor input
variations(Gholamalinezhad & Khosravi, n.d.)(Zafar et al., 2022). Average Pooling averages each
patch, providing smoother down sampling and capturing more general features. Both reduce
parameters and computation, speeding up training and expanding the receptive field. Max Pooling
is generally preferred for its often-superior performance.
Opool = max/avg(lpatch) 4)
Fully Connected Layer
In this layer, the data is flattened and continued with dot product operations to produce the
final output(Kossaifi et al., 2020).
y=W.x+b (5)
In a fully connected layer of a neural network, the output (y) is computed through a linear
transformation of the input (x) using a weight matrix (W) and a bias vector (b)
Loss Function
For classification tasks, a commonly used loss function is categorical cross-entropy(Damrich
& Hamprecht, n.d.)(Li et al., n.d.):

C
Loss = =" y.log (§7) ©)
i-1

Where C is number of classes, y;is actual label value (0 or 1), and y; is model prediction probability
Backpropagation and Optimization
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The parameters (kernel/weights and bias) are optimized using algorithms such as Gradient

Descent:
0=6-1.VyL (7)

In machine learning, we adjust model parameters (6) to minimize a loss function (£). Gradient
descent is a common method where we calculate the gradient of the loss (V4,£), which points
towar’ds increasing loss. We move in the opposite direction to decrease loss. The learning rate (n)
controls the step size of this movement.
2.2 The Squeeze-And-Excitation Attention Mechanism

The basic formulas of a CNN remain unchanged even with the addition of an attention
mechanism. The attention mechanism enhances the network by assigning weights to features
produced by CNN layers, helping the model concentrate on the most important features for
classification tasks (Y. Zhang et al., n.d.)(M. Zhang et al., n.d.). Below is an explanation of how the
attention mechanism, specifically the Squeeze-and-Excitation (SE) block, it is integrated into a CNN.
Feature Extraction with CNN

Initially, the image input is processed through standard CNN layers such as convolution,
activation (e.g., ReLU), and pooling (e.g., Max or Average Pooling) to extract feature maps. The
fundamental convolution, activation, and pooling equations are the same as in a standard CNN.
Attention Mechanism: SE Block
1. Squeeze Operation
The spatial dimensions of the feature map are reduced to channel descriptors via global average

pooling, calculated as:
1

ze = 0 Nt XL X (L), ©) ®)
Here, z, is the global context for channel ¢; H and W are the height and width of the feature map,
and X (i, j, ¢) represents the feature map value at position (i, ) in channel c. The result is a vector z
€ RC summarizing the global information of each channel.

2. Excitation Operation

The squeezed descriptor z is passed through two fully connected (FC) layers with ReLU and sigmoid
activations:

s= o (W,6(W,z)) ©)

Here, W1€R§XC and erIRg"C are the weight matrices for the FC layers, & represents the ReLU
activation, o is the sigmoid function, and r is a reduction ratio (e.g., =16). This process learns
attention weights s € R€, indicating the importance of each channel.

3. Scale Operation

The original feature map X is scaled using the learned attention weights s via element-wise
multiplication:

X'=X:s (10)

Here, each channel in the feature map is multiplied by its corresponding weight, emphasizing
channels with higher relevance.

4. Subsequent Layers

The scaled feature map X' is then processed through additional CNN layers, including further
convolution, pooling, flattening, and fully connected layers for classification. The equations for these
operations remain the same as in a standard CNN.

2.3 Evaluation

The confusion matrix offers a more detailed analysis by organizing predictions into a tabular

format(Krstini¢ et al., 2020)(Markoulidakis YannisMarkoulidakis & Kopsiaftis, 2021). For multi-class
classification, the confusion matrix extends to a K x K matrix, where K is the number of classes, with
diagonal elements representing correct predictions for each class. It contains four key metrics: TP,
TN, FP, and FN. Accuracy tells us the percentage of correct predictions a model makes from all
predictions, calculated as the sum of True Positives (TP) and True Negatives (TN) divided by the
total number of predictions, including False Positives (FP) and False Negatives (FN). It delivers a
simple measure of overall correctness but may not fully reflect performance on imbalanced datasets.

TP+TN

Accuracy = ———
Y = TPITN+FP+FN

(11)
(12)

TP

Precision (Positive Predictive Value) = TP TFP
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L . TP
Recall (Sensitivity or True Positive Rate) = P (13)
Precision.Recall

F1—Score =2.——— (14)

Precision+Recall

2.4 Grad-Cam

To understand what parts within image a CNN finds most important, we use a technique
called Gradient-weighted Class Activation Mapping (Grad-CAM) to make a specific prediction. It
works by calculating the gradients of the class score with respect to the activations of the final
convolutional layer(Morbidelli et al., 2020)(Polytechnic et al., n.d.). These gradients highlight the
image regions most critical to the model's decision (Chen et al., n.d.)(Chakraborty et al., 2022). By
visualizing these gradients as a heatmap overlaid on the original image, we can see which regions
the CNN is focusing on to make its prediction. This provides insight into how the model makes its
decisions and gain insights into its strengths and weaknesses. All experiments were conducted on
a laptop equipped with an Intel Core i5-10300H CPU, 16GB RAM, and an NVIDIA GeForce MX250
GPU (2GB). The models were implemented using Python 3.10, TensorFlow 2.13, and Keras, with
supporting libraries such as NumPy, OpenCV, and Matplotlib.

3. RESULTS AND DISCUSSIONS

This study evaluated the performance of a baseline Convolutional Neural Network (CNN) and an
enhanced CNN with Squeeze-and-Excitation attention blocks (CNN+AM) for classifying three
categories of ship machinery: generators, engines, and oil-water separators (OWS). The dataset,
consisting of 199 original images, was expanded to 2,648 images using geometric and photometric
data augmentation to address overfitting and improve generalization. Both models were developed
in Python with TensorFlow and trained using a fixed split of 70% training, 15% validation, and 15%
testing sets. As this research focused on accuracy and confusion matrix metrics, cross-validation
was not employed. The baseline CNN achieved an accuracy of 68%, while the CNN+AM model
achieved 72%, indicating that the addition of attention mechanisms enhances the ability to extract
discriminative features in fine-grained classification tasks. The confusion matrix revealed that most
misclassifications occurred between generators and engines, which share similar shapes, metallic
textures, and component layouts. Variations in lighting, image angles, and background clutter also
contributed to these errors, highlighting the inherent challenge of distinguishing between visually
similar machinery components.

To the best of our knowledge, no previous studies have applied image-based classification
to this private maritime machinery dataset, making direct quantitative comparisons with other
research unfeasible. However, our findings are consistent with results from similar industrial and
mechanical image classification domains, where attention-enhanced models have shown superior
performance in distinguishing visually similar classes. The novelty of this research lies in its
application of CNN+AM to a dataset that has not been explored before, demonstrating its potential
for reliable, automated classification in maritime settings. Although cross-validation and statistical
significance tests such as t-tests or ANOVA were not applied in this study, the consistent
performance improvements observed in the confusion matrix support the robustness of the
CNN+AM approach. Future work will focus on expanding the dataset, performing statistical
validation, and incorporating interpretability methods like Grad-CAM to provide deeper insights into
model decision-making and to further reduce classification errors.

3.1 CNN Implementation

The layer expects images of size 224x224 pixels with 3 color channels (RGB). It uses 32
filters (Channels), kernel size 3x3 grid, to scan the image and extract features. After each scan, it
applies a ReLU activation function.

0(i,j,k)=ZZZI(i+m,j+n,c).K(m,n,c,k)+bk (15)

m=1n=1c=1

O(i,j, k) represents the output value at a specific location (i,j) in the output feature map for channel k.
I(ij,c) is the input pixel value at location (i,j) for input channel c. K(m,n,c,k) denotes the kernel (or
filter) values; it's a 3x3x3 tensor connecting input channel ¢ to output channel k. Finally, bk is a bias
term added to each output channel k.

The output feature map is passed through the ReLU activation function: (f(x) = max(o, x))
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It shrinks the size of the data by looking at 2x2 blocks of values and keeping only the
largest value in each block. Because it moves in steps of 2 (stride of 2), the output is half the size of
the input in both height and width.

Opool(i,j' k) = p,qepgnt%ﬁ[o(i + p'j + q, k)] (16)

The formulas remain the same as the first convolutional layer, but the number of filters increases to
64 and 128, respectively.

Layer 2: Conv2D(64, (3, 3), activation="relu’)

Layer 3: Conv2D(128, (3, 3), activation="relu’)
The spatial dimensions are flattened into a 1D vector. For example, if the output from the last
convolution is (28 x 28 x128), flattening converts it into: flattened output € R?2828.128
Flattened input vector of size 100352 (resulting from flattening a previous layer's output, perhaps of
shape 28x28x128). Each of the 100352 inputs is connected to each of the 128 neurons.

N

i=1

These notations describe how a fully connected layer (or Dense layer) computes its output.
y; represents the output value of neuron j. x; is the input value from neuron i. W is the weight
connecting input neuron i to output neuron j. b; is the bias term for output neuron j. The output is
passed through the RelLU activation function: (f(x) = max(0, x)). Dropout randomly disables 50%
of neurons to prevent overfitting.

The final layer of a classification neural network is the output layer. A Dense (fully
connected) layer where the number of output neurons is equal to the number of classes the network
is trying to predict C. SoftMax activation function converts the raw outputs of the neurons into a
probability distribution over the classes, where each output is a value between 0 and 1.

~ exp (z;)
Yi= 5 ewap (18)
Where, z; is output of the last layer for class i and y; is Predicted probability for class i.

Categorical cross entropy is a loss function commonly used in multi-class classification
problems where the labels are one-hot encoded (meaning each sample's label is represented as a
vector where all elements are 0 except for a 1 at the index corresponding to the correct class).

c
L= - y.log () (19)

Here, y; is True label for class i (1 for correct class, 0 otherwise) and §; is Predicted probability for
class i.
Optimization, Adam optimizer updates the weights using:

m
6=6-n.
v, +E

(20)

in the context of training neural networks, 6 represents the model's parameters (weights and biases)
that are adjusted to minimize the loss. n is the learning rate, controls the size of these adjustments
at each step. To improve the optimization process, techniques like momentum m; and RMSProp v,
are often used. A constant € is added to avoid division by zero o during calculations.

3.2 Attention Block SE (Squeeze-and-Excitation)
First, Global Average Pooling (Squeeze)

S

GAP (k) = H;W Z 0®(i,j,k) (21)

H
=1j

1l
=

i

Here output dimension is 64.
Second, Fully Connected Layer 1 (Reduction),
SEreduced (k) = RelU (Wreduced- GAP(k) + breduced) (22)

Wieauced € R84*4 (64 channels reduced by ratio of 16) and output dimension is 4.
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Third, Fully Connected Layer 2 (Expansion)
SEexpanded (k) = Slngld (Wexpanded'SEreduced (k) + breduced) (23)

Wexpanded € R#®* output dimension is 64.
Fourth, Channel-wise Multiplication (Excitation)

05 (0., k) = 0@ (i, ). SEexpanaea k) (24)
Final output dimensions: (112x112x64)

3.3 Model with Attention Block (CNN+AM)

The network begins with an input tensor X of shape 224x224x3, representing an RGB
image. This input is then processed using multiple convolutional and pooling layers. The first
convolutional block (Conv Block 1) applies 32 filters of size 3x3 with ReLU activation and 'same’
padding, followed by max pooling with a 2x2 kernel, resulting in an output of 112x112x32. The
second convolutional block (Conv Block 2) uses 64 filters with the same configuration, producing an
output of 112x112x64. An attention mechanism (Squeeze-and-Excitation block) is then applied,
consisting of global average pooling (squeezing to 64), a dense layer reducing dimensionality to 4,
another dense layer expanding back to 64, and finally, channel-wise multiplication (excitation),
maintaining the 112x112x64 output shape. Another max pooling layer reduces the dimensions to
56x56x64. A third convolutional block (Conv Block 3), similar to the previous ones but with 128 filters,
is followed by another Squeeze-and-Excitation block operating on 128 channels, resulting in a
28x28x128 output. The tensor is then flattened to a vector of size 28 * 28 * 128. This flattened vector
is fed into a dense layer with 128 neurons and ReLU activation, producing a 128-dimensional output.
A dropout layer with a 50% dropout rate is applied. Finally, the output layer consists of a dense layer
with num_classes neurons and SoftMax activation, producing the final classification output of size
num_classes. Figure 2 and 3 are diagram of CNN and CNN with attention mechanism architecture.

input_layer

MaxPooling2D

Conv2D

kernel (3x3x3x32)
bias (32)

Activation

Flatten

Dense

kernel (86528x128)
bias (128)

Activation

MaxPooling2D

Conv2D

kernel (3x3x32x64)

bias (64) Lropout

Activation

Dense

kernel (128x3)
bias (3)

Activation

MaxPooling2D

Conv2D

kernel (3x3x64x128)
bias (128)

Activation

Figure 2 Baseline CNN architecture
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input_layer

MaxPoaling2D

Activation

Activation

MaxPooling2D

GlobalAve..Pooling2D

Activation

Activation
Dropout

GlobalAve...Pooling2D

Activation
kernel (8x126)

bias (128)

Activation

MaxPooling2D

Multiply

Figure 3 CNN with attention mechanism architecture

3.4 Experimental Result
The metrics used are precision, recall, f1-score, and accuracy, confusion metrics (CF). The
results show that the CNN+Attention mechanism model outperforms the standard CNN across all
evaluated metrics as shown at Tabel 3. Compare with Tabel 4. CNN Baseline.

Tabel 3. CNN + Attention mechanism Confusion metric Tabel 4. Baseline CNN Confusion metric
Generator Engine Oows Generator Engine Oows
Generator 98 28 12 Generator 84 36 16
Engine 35 108 6 Engine 33 108 8
OWs 25 4 85 ows 24 8 82

This demonstrates that incorporating the attention mechanism leads to a noticeable
improvement in the model's classification accuracy and balance precision and recall. The additional
data provided alongside the main comparison table seems to detail the count of correct and incorrect
classifications per class (Generator, Engine, OWS) by each model. In these details also, CNN+AM
consistently has better classification counts compared to CNN. Tabel 5. is result recapitulation.

Tabel 5. Recapitulation result

precision recall f1-score accuracy
CNN 68.36%  68.16% 68.22% 68.16%
CNN+AM 73.24%  72.39% 72.64% 72.39%

The Grad-CAM results show heatmaps overlayed on the original images to highlight the
region’s most critical in the model's predictions. Using the "multiply_3" layer, the Grad-CAM
effectively focuses on critical features in each image as shown at figure 4. The overlay was created
with a blending method (cv2.addWeighted) combining the original images (weighted at 0.8) and the
Grad-CAM heatmaps (also weighted at 0.8), providing clear visualization of the model's areas of
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attention. Figure 4 is an interpretation of the Grad-CAM results which shows areas of concern in
classification These visualizations validate that the model identifies relevant details specific to the
input data.

Grad-CAM

Original Image

Grad-CAM

Grad-CAM

Figure 4 Grad-Cam result

4. CONCLUSION

This study demonstrates the effectiveness of integrating the SE block into a CNN for classifying ship
components—Generators, Engines, and Oil-Water Separators—achieving a 4% accuracy
improvement (68% to 72%) over the baseline CNN. Misclassifications, especially between
generators and engines, arise from their high visual similarity, indicating the need for larger datasets,
advanced attention mechanisms, and fine-grained feature extraction in future work. Grad-CAM
visualizations confirmed that CNN-AM focuses on distinctive structural features, enhancing
interpretability and reliability. Although direct comparisons with prior studies are limited due to the
novelty of this private dataset, the findings align with trends in industrial image classification where
attention-based models outperform conventional CNNs. Practically, this model can support
automated maritime inspections, with potential improvements through real-time optimization
techniques such as pruning, quantization, and enhanced explainability for safety-critical applications.

REFERENCES

Akhtar, N., & Ragavendran, U. (2020). Interpretation of intelligence in CNN-pooling processes: a methodological
survey. Neural Computing and Applications, 32(3), 879-898. https://doi.org/10.1007/s00521-019-04296-
5

Beyer, L., Zhai, X., Royer, A., Markeeva, L., Anil, R., & Kolesnikov, A. (2022). Knowledge distillation: A good
teacher is patient and consistent. Proceedings of the IEEE Computer Society Conference on Computer
Vision and Pattern Recognition, 2022-June, 10915-10924.
https://doi.org/10.1109/CVPR52688.2022.01065

Chakraborty, T., Trehan, U., Mallat, K., & Dugelay, J. L. (2022). Generalizing Adversarial Explanations with
Grad-CAM. IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops,
2022-June, 186—192. https://doi.org/10.1109/CVPRW56347.2022.00031

Chen, L., Chen, J., Hajimirsadeghi, H., Mori, G., & Ai, B. (n.d.). Adapting Grad-CAM for Embedding Networks.

da Costa, A. Z., Figueroa, H. E. H., & Fracarolli, J. A. (2020). Computer vision based detection of external
defects on tomatoes wusing deep learning. Biosystems Engineering, 190, 131-144.

Jurnal Mandiri IT, Vol. 14 No. 1, July (2025): pp. 157-168



Jurnal Mandiri IT ISSN 2301-8984 (Print), 2809-1884 (Online) a 167

https://doi.org/10.1016/j.biosystemseng.2019.12.003

Damrich, S., & Hamprecht, F. A. (n.d.). On UMAP’s True Loss Function.

Gholamalinezhad, H., & Khosravi, H. (n.d.). Pooling Methods in Deep Neural Networks, a Review.

Hayou, S., Doucet, A., & Rousseau, J. (n.d.). On the Impact of the Activation Function on Deep Neural Networks
Training.
Kossaifi, J., Kolbeinsson, A., Khanna, A., Furlanello, T., & Anandkumar, A. (2020). Tensor Regression
Networks. Journal of Machine Learning Research, 21, 1-21. http://[jmir.org/papers/v21/18-503.html.
Krstini¢, D., Braovi¢, M., Seri¢, L., & Bozié-Stulié, D. (2020). MULTI-LABEL CLASSIFIER PERFORMANCE
EVALUATION WITH CONFUSION MATRIX. 1-14. https://doi.org/10.5121/csit.2020.100801

Lee, C. M., Jang, H. J., & Jung, B. G. (2023). Development of an Automated Spare-Part Management Device
for Ship Controlled by Raspberry-Pi Microcomputer Based on Image-Progressing & Transfer-Learning.
Journal of Marine Science and Engineering, 11(5). https://doi.org/10.3390/jmse11051015

Li, Z., Ji, J., Ge, Y., & Zhang, Y. (n.d.). AutoLossGen: Automatic Loss Function Generation for Recommender
Systems. 12. https://doi.org/10.1145/3477495.3531941

Mahadevkar, S. V., Khemani, B., Patil, S., Kotecha, K., Vora, D. R., Abraham, A., & Gabralla, L. A. (2022). A
Review on Machine Learning Styles in Computer Vision - Techniques and Future Directions. |[EEE
Access, 10(September), 107293-107329. https://doi.org/10.1109/ACCESS.2022.3209825

Markoulidakis YannisMarkoulidakis, I., & Kopsiaftis, G. (2021). Multi-Class Confusion Matrix Reduction method
and its application on Net Promoter Score classification problem.
https://doi.org/10.1145/3453892.3461323

Mohiuddin, K., Welke, P., Alam, M. A., Martin, M., Alam, M. M., Lehmann, J., & Vahdati, S. (2023). Retention Is
All You Need. International Conference on Information and Knowledge Management, Proceedings, Nips,
4752-4758. https://doi.org/10.1145/3583780.3615497

Morbidelli, P., Carrera, D., Rossi, B., Fragneto, P., & Boracchi, G. (2020). Augmented Grad-CAM: Heat-Maps
Super Resolution Through Augmentation. ICASSP, IEEE International Conference on Acoustics, Speech
and Signal Processing - Proceedings, 2020-May, 4067-4071.
https://doi.org/10.1109/ICASSP40776.2020.9054416

Moujahid, H., Cherradi, B., Al-Sarem, M., Bahatti, L., Eljialy, A. B. A. M. Y., Alsaeedi, A., & Saeed, F. (2022).
Combining cnn and grad-cam for covid-19 disease prediction and visual explanation. Intelligent
Automation and Soft Computing, 32(2), 723—745. https://doi.org/10.32604/iasc.2022.022179

Mumuni, A., & Mumuni, F. (2022). Data augmentation: A comprehensive survey of modern approaches. Array,
16(November), 100258. https://doi.org/10.1016/j.array.2022.100258

Polytechnic, N. A., Uni-, K., Engineering, M., & Technological, N. (n.d.). Version of Record:
https.//www.sciencedirect.com/science/article/pii/S0010482522003420. 1-46.

Sardar, A. (2024). Improving safety and efficiency in the maritime industry: a multi-disciplinary approach.
https://doi.org/10.25959/26011102.V1

Sarvamangala, D. R., Raghavendra, -, & Kulkarni, V. (2065). Convolutional neural networks in medical image
understanding: a survey. Evolutionary Intelligence, 15, 1-22. https://doi.org/10.1007/s12065-020-00540-
3

Selvaraju, R. R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., & Batra, D. (2016). Grad-cam: Why did you
say that? visual explanations from deep networks via gradient-based localization. Grad-CAM: Visual
Explanations from Deep Networks via  Gradient-Based Localization, 17, 331-336.
http://arxiv.org/abs/1610.02391

Shang, D., Zhang, J., Zhou, K., Wang, T., & Qi, J. (2022). Research on the Application of Visual Recognition in
the Engine Room of Intelligent Ships. Sensors, 22(19). https://doi.org/10.3390/s22197261

Sharma, H., & Kumar, H. (2024). A computer vision-based system for real-time component identification from
waste printed circuit boards. Journal of Environmental Management, 351(December 2023), 119779.
https://doi.org/10.1016/j.jenvman.2023.119779

Theodoropoulos, P., Spandonidis, C. C., Giannopoulos, F., & Fassois, S. (2021). A deep learning-based fault
detection model for optimization of shipping operations and enhancement of maritime safety. Sensors,
21(16). https://doi.org/10.3390/s21165658

Wang, Y., Zhang, J., Zhu, J., Ge, Y., & Zhai, G. (2023). Research on the Visual Perception of Ship Engine
Rooms Based on Deep Learning. Journal of Marine Science and Engineering, 11(7).
https://doi.org/10.3390/jmse11071450

Xu, M., Yoon, S., Fuentes, A., & Park, D. S. (2023). A Comprehensive Survey of Image Augmentation
Techniques for Deep Learning. Pattern Recognition, 137, 109347.
https://doi.org/10.1016/j.patcog.2023.109347

Zafar, A., Aamir, M., Mohd Nawi, N., Arshad, A., Riaz, S., Alruban, A., Dutta, A. K., & Almotairi, S. (2022). A
Comparison of Pooling Methods for Convolutional Neural Networks. Applied Sciences 2022, Vol. 12, Page
8643, 12(17), 8643. hitps://doi.org/10.3390/APP12178643

Zhang, M., Gao, H., Liao, X., Ning, B., Gu, H., & Yu, B. (n.d.). Problem Solving Protocol DBGRU-SE: predicting
drug-drug interactions based on double BiGRU and squeeze-and-excitation attention mechanism.
https://doi.org/10.1093/bib/bbad184

Luky Fabrianto, Attention-based convolutional neural networks for interpretable classification of maritime
equipment



168 O ISSN 2301-8984 (Print), 2809-1884 (Online)

Zhang, Y., Li, K., Li, K., & Fu, Y. (n.d.). MR Image Super-Resolution with Squeeze and Excitation Reasoning
Attention Network.

Zhang, Z., & Peng, H. (n.d.). Deeper and Wider Siamese Networks for Real-Time Visual Tracking. Retrieved
January 23, 2025, from https://github.com/

Jurnal Mandiri IT, Vol. 14 No. 1, July (2025): pp. 157-168



