Application of fuzzy tsukamoto method in forecasting weather

Authors

  • Aang Alim Murtopo STMIK YMI Tegal, Indonesia
  • Muhammad Nur Aslam STMIK YMI Tegal, Indonesia
  • Wresti Andriani STMIK YMI Tegal, Indonesia
  • Gunawan Gunawan STMIK YMI Tegal, Indonesia

DOI:

https://doi.org/10.35335/mandiri.v13i1.305

Keywords:

Fuzzy Tsukamoto, Moisture, Temperature, Weather, Weather Prediction

Abstract

In today's information age, accurate weather prediction is essential given its far-reaching impact on various aspects of life and economic activity. This study aimed to test the effectiveness of Fuzzy Tsukamoto's method in predicting important weather variables such as temperature, humidity, and precipitation. This research method uses a combination design that includes experimental methods for model development, quantitative analysis of historical weather data, and model validation using separate data. The results showed that the Fuzzy Tsukamoto method was able to increase the accuracy of weather predictions compared to conventional methods, with a significant decrease in the value of Mean Absolute Error (MAE) and Root Mean Square Error (RMSE). In conclusion, this study successfully demonstrates that Fuzzy Tsukamoto's method can be a more accurate alternative in weather prediction, making a significant contribution to the field of meteorology and its practical application in decision-making in various sectors that depend on weather prediction.

References

AlHaddad, U., Basuhail, A., Khemakhem, M., Eassa, F. E., & Jambi, K. (2023). Towards sustainable energy grids: A machine learning-based ensemble methods approach for outages estimation in extreme weather events. Sustainability, 15(16), 12622.

Aliev, R. A., Babanli, M. B., & Guirimov, B. G. (2024). Z-number based neural network structured inference system. Information Sciences, 671, 120341. https://doi.org/10.1016/j.ins.2024.120341

Anđelković, A. S., & Bajatović, D. (2020). Integration of weather forecast and artificial intelligence for a short-term city-scale natural gas consumption prediction. Journal of Cleaner Production, 266, 122096. https://doi.org/10.1016/j.jclepro.2020.122096

Barasa, P. M., Botai, C. M., Botai, J. O., & Mabhaudhi, T. (2021). A review of climate-smart agriculture research and applications in Africa. Agronomy, 11(6), 1255. https://doi.org/10.3390/agronomy11061255

Berawi, M. A., Leviäkangas, P., Siahaan, S. A. O., Hafidza, A., Sari, M., Miraj, P., Harwahyu, R., & Saroji, G. (2021). Increasing disaster victim survival rate: SaveMyLife mobile application development. International Journal of Disaster Risk Reduction, 60, 102290. https://doi.org/10.1016/j.ijdrr.2021.102290

Bin, L., Shahzad, M., Khan, H., Bashir, M. M., Ullah, A., & Siddique, M. (2023). Sustainable Smart Agriculture Farming for Cotton Crop: A Fuzzy Logic Rule Based Methodology. Sustainability, 15(18), 13874. https://doi.org/10.3390/su151813874

Burda, M., & Štěpnička, M. (2022). lfl: An R package for linguistic fuzzy logic. Fuzzy Sets and Systems, 431, 1–38. https://doi.org/10.1016/j.fss.2021.07.007

Chhetri, M., Kumar, S., Pratim Roy, P., & Kim, B.-G. (2020). Deep BLSTM-GRU model for monthly rainfall prediction: A case study of Simtokha, Bhutan. Remote Sensing, 12(19), 3174. https://doi.org/10.3390/rs12193174

Chi, S.-Y., & Chien, L.-H. (2023). Why defuzzification matters: an empirical study of fresh fruit supply chain management. European Journal of Operational Research, 311(2), 648–659. https://doi.org/10.1016/j.ejor.2023.05.037

Fathi, M., Haghi Kashani, M., Jameii, S. M., & Mahdipour, E. (2022). Big data analytics in weather forecasting: A systematic review. Archives of Computational Methods in Engineering, 29(2), 1247–1275. https://doi.org/10.1007/s11831-021-09630-6

Giannakidou, S., Radoglou-Grammatikis, P., Lagkas, T., Argyriou, V., Goudos, S., Markakis, E. K., & Sarigiannidis, P. (2024). Leveraging the power of internet of things and artificial intelligence in forest fire prevention, detection, and restoration: A comprehensive survey. Internet of Things, 26, 101171.

Guo, C., Ye, C., Ding, Y., & Wang, P. (2020). A multi-state model for transmission system resilience enhancement against short-circuit faults caused by extreme weather events. IEEE Transactions on Power Delivery, 36(4), 2374–2385.

Han, H., Liu, Z., Barrios Barrios, M., Li, J., Zeng, Z., Sarhan, N., & Awwad, E. M. (2024). Time series forecasting model for non-stationary series pattern extraction using deep learning and GARCH modeling. Journal of Cloud Computing, 13(1), 2. https://doi.org/10.1186/s13677-023-00576-7

Khodayar, M., Saffari, M., Williams, M., & Jalali, S. M. J. (2022). Interval deep learning architecture with rough pattern recognition and fuzzy inference for short-term wind speed forecasting. Energy, 254, 124143. https://doi.org/10.1016/j.energy.2022.124143

Kontogiannis, D., Bargiotas, D., & Daskalopulu, A. (2021). Fuzzy control system for smart energy management in residential buildings based on environmental data. Energies, 14(3), 752.

Kumar, V., Ramachandran, D., & Kumar, B. (2021). Influence of new-age technologies on marketing: A research agenda. Journal of Business Research, 125, 864–877. https://doi.org/10.1016/j.jbusres.2020.01.007

Meque, A., Gamedze, S., Moitlhobogi, T., Booneeady, P., Samuel, S., & Mpalang, L. (2021). Numerical weather prediction and climate modelling: Challenges and opportunities for improving climate services delivery in Southern Africa. Climate Services, 23, 100243.

Michailidis, P., Michailidis, I., Vamvakas, D., & Kosmatopoulos, E. (2023). Model-Free HVAC Control in Buildings: A Review. Energies, 16(20), 7124.

Muhammad, K., Obaidat, M. S., Hussain, T., Ser, J. Del, Kumar, N., Tanveer, M., & Doctor, F. (2021). Fuzzy logic in surveillance big video data analysis: comprehensive review, challenges, and research directions. ACM Computing Surveys (CSUR), 54(3), 1–33. https://doi.org/10.1145/3444693

Ren, X., Li, X., Ren, K., Song, J., Xu, Z., Deng, K., & Wang, X. (2021). Deep learning-based weather prediction: a survey. Big Data Research, 23, 100178. https://doi.org/10.1016/j.bdr.2020.100178

Silver, M., Svoray, T., Karnieli, A., & Fredj, E. (2020). Improving weather radar precipitation maps: A fuzzy logic approach. Atmospheric Research, 234, 104710. https://doi.org/10.1016/j.atmosres.2019.104710

Singh, S., & Goyal, M. K. (2023). Enhancing climate resilience in businesses: the role of artificial intelligence. Journal of Cleaner Production, 418, 138228.

Wang, Z., Hong, T., & Piette, M. A. (2020). Building thermal load prediction through shallow machine learning and deep learning. Applied Energy, 263, 114683. https://doi.org/10.1016/j.apenergy.2020.114683

Yudhana, A. (2023). Tsukamoto fuzzy inference system on Internet of Things-based for room temperature and humidity control. IEEE Access, 11, 6209–6227.

Zhang, G., Band, S. S., Ardabili, S., Chau, K.-W., & Mosavi, A. (2022). Integration of neural network and fuzzy logic decision making compared with bilayered neural network in the simulation of daily dew point temperature. Engineering Applications of Computational Fluid Mechanics, 16(1), 713–723. https://doi.org/10.1080/19942060.2022.2043187

Downloads

Published

2024-06-19

How to Cite

Murtopo, A. A., Aslam, M. N., Andriani, W., & Gunawan, G. (2024). Application of fuzzy tsukamoto method in forecasting weather . Jurnal Mandiri IT, 13(1), 116–126. https://doi.org/10.35335/mandiri.v13i1.305

Most read articles by the same author(s)

1 2 > >>