Analysis of algorithms and data processing efficiency in movie recommendation systems based on machine learning
DOI:
https://doi.org/10.35335/mandiri.v13i2.358Keywords:
Collaborative Filtering, Content-Based Filtering, Data Processing Efficiency, Machine Learning, Movie Recommendation SystemsAbstract
This study explores the use of content-based filtering and collaborative filtering algorithms in machine learning (ML)-based movie recommendation systems. The Collaborative Filtering and Content-Based Filtering algorithms work rather well, according to evaluation using Precision, Recall, and F1-Score metrics; Precision is approximately 0.82, Recall is approximately 0.85, and F1-Score is approximately 0.83. These findings show that both systems are capable of providing users with accurate and pertinent movie suggestions. The Collaborative Filtering and Content-Based Filtering algorithms work rather well, according to evaluation using Precision, Recall, and F1-Score metrics; Precision is approximately 0.82, Recall is approximately 0.85, and F1-Score is approximately 0.83. These findings show that both systems are capable of providing users with accurate and pertinent movie suggestions. The results demonstrate that both Collaborative Filtering and Content-Based Filtering produce highly accurate and relevant movie suggestions. When it comes to data processing, collaborative filtering is shown to be more effective than content-based filtering. The research advances the fields of information technology and computer science, especially in the creation of more precise and effective movie recommendation systems. The study also emphasizes how combining both algorithms in a hybrid approach could lead to even greater advancements in the creation of ML-based recommendation systems. Nevertheless, the study contains drawbacks, including the use of a small dataset and the failure to take into account additional variables that can affect movie choices. The goal of future studies should be to increase the dataset's size and take into account more aspects of the creation of movie recommendation systems.
References
Adve, S. V., & Boehm, H. J. (2010). Memory models: A case for rethinking parallel languages and hardware. Communications of the ACM, 53(8), 90–101. https://doi.org/10.1145/1787234.1787255
Aini, Q., Lutfiani, N., Kusumah, H., & Zahran, M. S. (2021). Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo. CESS (Journal of Computer Engineering, System and Science), 6(2), 192.
ARYANTO, R. I. O. R. (2021). Studi Komparasi Model Klasifikasi Berbasis Pembelajaran Mesin Untuk Sistem Rekomendasi Pemilihan Program Studi Sarjana.
Breese, J. S., Heckerman, D., & Kadie, C. (2013). Empirical Analysis of Predictive Algorithms for Collaborative Filtering. 43–52.
Chen, L., Xu, Z., & Yu, X. (2013). The ordered multiplicative modular geometric operator. Knowledge-Based Systems, 39, 144–150. https://doi.org/10.1016/j.knosys.2012.10.014
Dong, S., & Kaeli, D. (2017). DNNMark: A deep neural network benchmark suite for GPUs. Proceedings of the General Purpose GPUs, GPGPU-10 2017, 63–72. https://doi.org/10.1145/3038228.3038239
Duricic, T., Kowald, D., Lacic, E., & Lex, E. (2018). Trust-based collaborative filtering: Tackling the cold start problem using regular equivalence. RecSys 2018 - 12th ACM Conference on Recommender Systems, 446–450. https://doi.org/10.1145/3240323.3240404
Ekstrand, M. D., Riedl, J. T., & Konstan, J. A. (2010). Collaborative filtering recommender systems. Foundations and Trends in Human-Computer Interaction, 4(2), 81–173. https://doi.org/10.1561/1100000009
Eryc, E., Wildani, L. N., Raihan, R., Sibarani, T. P., & Jhohari, J. (2024). Analisis Penerapan Teknologi Manajemen Informasi di Netflix Global: Optimalisasi Pengalaman Pengguna dan Efisiensi Operasional. AMANAH MENGABDI, 1(1), 102–111.
Hartatik, H., Kwintiana, B., Nengsih, T. A., Baradja, A., Harto, B., Sudipa, I. G. I., Handika, I. P. S., Adhicandra, I., & Gugat, R. M. D. (2023). DATA SCIENCE FOR BUSINESS: Pengantar & Penerapan Berbagai Sektor. PT. Sonpedia Publishing Indonesia.
Id, I. D. (2021). Machine Learning: Teori, Studi Kasus dan Implementasi Menggunakan Python (Vol. 1). Unri Press.
Majumdar, A. (2024). Collaborative filtering: Recommender systems. Collaborative Filtering: Recommender Systems, 1–127. https://doi.org/10.1201/9781003511267
Mertens, P. (1997). Recommender Systems. Wirtschaftsinformatik, 39(4), 401–404.
Nilashi, M., Bagherifard, K., Ibrahim, O., Alizadeh, H., Nojeem, L. A., & Roozegar, N. (2013). Collaborative filtering recommender systems. Research Journal of Applied Sciences, Engineering and Technology, 5(16), 4168–4182. https://doi.org/10.19026/rjaset.5.4644
Pazzani, M., & Billsus, D. (1997). Learning and Revising User Profiles: The Identification of Interesting Web Sites. Machine Learning, 27(3), 313–331. https://doi.org/10.1023/A:1007369909943
Pérez-Almaguer, Y., Yera, R., Alzahrani, A. A., & Martínez, L. (2021). Content-based group recommender systems: A general taxonomy and further improvements. Expert Systems with Applications, 184. https://doi.org/10.1016/j.eswa.2021.115444
Pratiwi, P. S. (2022). PERANCANGAN SISTEM REKOMENDASI BERBASIS MODEL ONTOLOGI UNTUK REKOMENDASI TEMPAT MAGANG MAHASISWA. Journal of Syntax Literate, 7(6).
Putri, H. D., & Faisal, M. (2023). Analyzing the effectiveness of collaborative filtering and content-based filtering methods in anime recommendation systems. Jurnal Komtika (Komputasi Dan Informatika), 7(2), 124–133.
Ricci, F., Shapira, B., & Rokach, L. (2015). Recommender systems handbook, Second edition. In Recommender Systems Handbook, Second Edition. https://doi.org/10.1007/978-1-4899-7637-6
Rimadias, S. (2024). Optimalisasi Artificial Intelligence (AI) Pada Platform SINTA. Sinta DIkti.
Sarwar, B., Karypis, G., Konstan, J., & Riedl, J. (2001). Item-based collaborative filtering recommendation.pdf. Proceedings of the 10th International Conference on World Wide Web (WWW’01), 285–295.
Sidora, L. I., & Harani, N. H. (2023). SISTEM REKOMENDASI MUSIK SPOTIFY MENGGUNAKAN KNN DAN ALGORITMA GENETIKA. JATI (Jurnal Mahasiswa Teknik Informatika), 7(4), 2585–2591.
Tran, T. C. T., Phan, L. P., & Huynh, H. X. (2022). Energy-based Collaborative Filtering Recommendation. International Journal of Advanced Computer Science and Applications, 13(7), 557–562. https://doi.org/10.14569/IJACSA.2022.0130766
Wen, Y., & O’Boyle, M. F. P. (2017). Merge or Separate? 22–31. https://doi.org/10.1145/3038228.3038235
WIDAYANTI, R., CHAKIM, M. H. R., LUKITA, C., AWALI, M. R., VALLEN, J., ANDINI, D., MAHENDRA, R., & NABILA, D. (n.d.). LAPORAN AKHIR PENELITIAN MANDIRI PENGEMBANGAN METODE FILTRASI KOLABORATIF UNTUK PENINGKATAN SISTEM REKOMENDASI.
Wulandari, I. A., Pahu, G. Y. K. S. S., & Rahayu, P. (2020). Peran Ontologi dalam Pengembangan Sistem Rekomendasi pada Domain Online Learning. Jurnal Komtika (Komputasi Dan Informatika), 4(1), 1–8.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Rachmat Rachmat , Muhammad Yusuf, Muh. Fahmi Basmar, Suherwin Suherwin

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.