Application of fuzzy time series method to determine medical equipment inventory
DOI:
https://doi.org/10.35335/mandiri.v14i1.417Keywords:
Forecasting, Fuzzy Time Series, Inventory Planning, MAPE, Medical EquipmentAbstract
This study applied the Fuzzy Time Series (FTS) method to forecast monthly stock requirements for medical equipment at PT. Karya Metropolis. The FTS process including interval determination, fuzzification, fuzzy rule formation, and defuzzification successfully identified historical patterns in sales data and produced predictions closely aligned with actual values. Forecast results indicated the next month’s needs for several items, such as 154.5 units of gauze rolls, 129 units of leukocrepe, 26.5 units of hypafix, 25 liters of 95% alcohol, 487.5 oxygen nebulizer masks, 109.5 units of Vaseline swabs, and 61 Maxter gloves. Forecast accuracy was assessed using Mean Absolute Percentage Error (MAPE), where most items showed low error rates, including gauze rolls (6.16%), Vaseline swabs (7.21%), and Maxter gloves (9.28%). However, the oxygen nebulizer mask showed a higher MAPE value of 47.28%, indicating a need for method refinement or integration with other approaches for that item. Overall, the FTS method proved effective in supporting accurate, efficient, and measurable stock planning decisions for medical supplies.
References
Ahmad, J. (2024). Strategic Planning : Navigating Uncertainty in Business Management. Journal of Management & Social Science, 02(01), 14.
Arisandi, A., & Hafid, H. (2024). Akurasi Model Prediksi Menggunakan Metode Automatic Clustering Fuzzy Time Series pada Indeks Harga Konsumen di Kota Makassar. Journal of Mathematics: Theory and Applications, 6(1), 97–103. https://doi.org/10.31605/jomta.v6i1.3621
Azis, A., Zy, A. T., & Sunge, A. S. (2024). Prediksi Penjualan Obat Dan Alat Kesehatan Terlaris Menggunakan Algoritma K-Nearest Neighbor. Jurnal Teknologi Dan Sistem Informasi Bisnis, 6(1), 117–124. https://doi.org/10.47233/jteksis.v6i1.1078
Chukwuma-Eke, E. C., Ogunsola, O. Y., & Isibor, N. J. (2022). A Conceptual Approach to Cost Forecasting and Financial Planning in Complex Oil and Gas Projects. International Journal of Multidisciplinary Research and Growth Evaluation., 3(1), 819–833. https://doi.org/10.54660/.ijmrge.2022.3.1.819-833
Garcia, P. A., & Adams, J. (2023). Driven Decision Making: Leveraging Analytics and AI for-Data Strategic Advantage. https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7363988&isnumber=7363706
Hafiz, M. A., & Sriani. (2023). Penerapan Logika Fuzzy Sugeno Untuk Optimasi Stok Biji Kopi Pada Kafe Rooster. Jurnal Fasilkom, 13(02), 165–172. https://doi.org/10.37859/jf.v13i02.5460
Hamdani, A. I., Agus Pranoto, Y., & Vendyansyah, N. (2020). Penerapan Metode Fuzzy Time Series Untuk Prediksi Penjualan Berbasis Web Pada Cv.AGVA Kota Pasuruan. JATI (Jurnal Mahasiswa Teknik Informatika), 4(1), 35–41. https://doi.org/10.36040/jati.v4i1.2433
Hayuningtyas, R. Y., & Sari, R. (2021). Aplikasi Peramalan Alat Kesehatan Menggunakan Single Moving Average. Jurnal Infortech, 3(1), 40–45. https://doi.org/10.31294/infortech.v3i1.10397
Ipan, Syaripuddin, & Nohe, D. A. (2022). Perbandingan Model Chen Dan Model Lee Pada Metode Fuzzy Time Series Untuk Peramalan Produksi Kelapa Sawit Provinsi Kalimantan Timur. Prosiding Seminar Nasional Matematika, Statistika, Dan Aplikasinya, 2(1), 28–36.
Komaria, V., Maidah, N. El, & Furqon, M. A. (2023). Prediksi Harga Cabai Rawit di Provinsi Jawa Timur Menggunakan Metode Fuzzy Time Series Model Lee. Komputika : Jurnal Sistem Komputer, 12(2), 37–47. https://doi.org/10.34010/komputika.v12i2.10644
Listyaning Pangestu, S., Rahmat, U., Program, S., Matematika, F., Matematika, D., Ilmu, P., Alam, U., Pamulang, T., & Selatan, I. (2024). Model Lee Metode Fuzzy Time Series Untuk Peramalan Penjualan Obat Antibiotik. Jurnal Matematika Dan Ilmu Pengetahuan Alam, 4(2).
Lucas, P. O., Orang, O., Silva, P. C. L., Mendes, E. M. A. M., & Guimarães, F. G. (2022). A Tutorial on Fuzzy Time Series Forecasting Models: Recent Advances and Challenges. Learning and Nonlinear Models, 19(2), 29–50. https://doi.org/10.21528/lnlm-vol19-no2-art3
Muhammad Alwi Baihaqi, & Sriani. (2023). Penerapan Metode Logika Fuzzy Sugeno untuk Optimasi Persediaan Stok Masker pada Apotek Intravena. Jurnal KomtekInfo, 10, 141–149. https://doi.org/10.35134/komtekinfo.v10i4.455
Muhammad Nur, Eis Nur Rizki, Abdul Alimul Karim, & Resy Kumala Sari. (2024). Peramalan Jumlah Penumpang Domestik Pada Bandar Udara Sultan Syarif Kasim II Dengan Menggunakan Metode Winter’s Exponential Smoothing. Jurnal Teknologi Dan Manajemen Industri Terapan, 3(I), 57–66. https://doi.org/10.55826/tmit.v3ii.302
Nasution, R. Z., & Sriani, S. (2023). Fuzzy Time Series and Data Visualization for Forecasting Sales of Grocery Ingredients. PIKSEL : Penelitian Ilmu Komputer Sistem Embedded and Logic, 11(2), 425–434. https://doi.org/10.33558/piksel.v11i2.7383
Rahmawati, Inayati, S., Yuliana, & Hanafiah, A. (2021). Prediction of the number of participants bpjs recipient of assistance budget using the fuzzy time series cheng method. Barekeng, 15(2), 373–384. https://doi.org/10.30598/barekengvol15iss2pp373-384
Ritonga, S. H. F., & Armansyah. (2025). Analisis Fuzzy Tsukamoto Untuk Penentuan Hunian Kos Berdasarkan Preferensi Individu. TEKNIKA: Jurnal Ilmiah Bidang Ilmu Rekayasa, 19(1), 59–70.
Sari, F., Mahmud, S. F., & Faisal, R. (2023). Sistem Optimalisasi Pengadaan Alat Kesehatan Menggunakan Metode Fuzzy Time Series. Jurnal Media Informatika Budidarma, 7(4), 1766. https://doi.org/10.30865/mib.v7i4.6405
Setiawan, I. (2021). Rancang Bangun Aplikasi Peramalan Persediaan Stok Barang Menggunakan Metode Weighted Moving Average (Wma) Pada Toko Barang Xyz. Jurnal Teknik Informatika, Vol. 13, No. 3, Agustus 2021, 13(3), 1–9.
Sunarsi, D. (2023). Strategi pemasaran berbasis digital. 3(2), 2.
Wantoro, A., Verdian, A., Rusliyawati, R., & Utami, Y. T. (2023). Penerapan Logika Fuzzy Dengan Fis Mamdani Untuk Kontrol Volume Televisi. Jurnal Teknik Dan Sistem Komputer, 4(1), 38–48. https://doi.org/10.33365/jtikom.v4i1.2693
Yolanda, R., Rahmi, D., Kurniati, A., & Yuniati, S. (2024). Penerapan Metode Triple Exponential Smoothing dalam Peramalan Produksi Buah Nenas di Provinsi Riau. Jurnal Teknologi Dan Manajemen Industri Terapan, 3(I), 1–10. https://doi.org/10.55826/tmit.v3ii.285
Yudha, F. A., & Putri, R. A. (2024). Penerapan metode fuzzy time series dalam prediksi produksi kulit pie. IJAI, 16(2), 39–55.
Zellner, M., Abbas, A. E., Budescu, D. V., & Galstyan, A. (2021). A survey of human judgement and quantitative forecasting methods. Royal Society Open Science, 8(2). https://doi.org/10.1098/rsos.201187
Zufria, I., Fadhillah, N., Islam, U., & Sumatera, N. (2024). PREDIKSI PENJUALAN IKAN DENGAN METODE FUZZY. 4307(August), 1097–1102.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rozai Iskandar, Mhd. Furqan

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
						
							



