Implementation of association method using fp-growth algorithm on sales transaction data at Koperasi Primer Pullahta Hankam Pusdatin KEMHAN RI
DOI:
https://doi.org/10.35335/mandiri.v14i1.446Keywords:
Association Rules, Data Mining, FP-Growth Algorithm, Lift Ratio, Sales TransactionAbstract
The conventional recording of sales transaction data frequently results in inaccuracies and presents significant obstacles to comprehensive data analysis. This study was conducted at Primkop Pullahta Hankam Pusdatin Kemhan RI with the aim of generating a product list based on item categories that are most frequently purchased together. These item combinations are expected to assist the cooperative in optimizing sales performance. The research employed a data mining technique known as association rule mining, which is designed to identify and predict customer purchasing behavior through analysis of transaction patterns. The dataset used comprised sales transaction records collected between September and November 2024. The FP-Growth algorithm was selected for its efficiency in identifying frequent itemsets without candidate generation. This algorithm utilized minimum support and confidence thresholds to generate association rules. The modeling process produced five association rules, each meeting the criteria of a minimum support of 20% and a minimum confidence of 80%, indicating strong co-occurrence among specific product combinations. Functional testing using the blackbox method demonstrated that all implemented features performed in accordance with specified functional requirements. The findings offer valuable insights for cooperative management by enabling data-driven decision-making in inventory planning, promotional bundling, and strategic sales targeting. These implications underscore the practical contribution of the research in enhancing operational efficiency and sales strategy within the cooperative sector.
References
Anggrawan, A., Mayadi, M., & Satria, C. (2021). Menentukan Akurasi Tata Letak Barang dengan Menggunakan Algoritma Apriori dan Algoritma FP-Growth. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(1), 125–138. https://doi.org/10.30812/matrik.v21i1.1260
Arifandy, F. P., Norsain, N., & Firmansyah, I. D. (2020). Peran Koperasi Dalam Meningkatkan Perekonomian Masyarakat Nelayan: Perspektif Modal Kerja. Jurnal Akademi Akuntansi, 3(1), 118. https://doi.org/10.22219/jaa.v3i1.11665
Ashari, I. A., Wirasto, A., Nugroho Triwibowo, D., & Purwono, P. (2022). Implementasi Market Basket Analysis dengan Algoritma Apriori untuk Analisis Pendapatan Usaha Retail. MATRIK : Jurnal Manajemen, Teknik Informatika Dan Rekayasa Komputer, 21(3), 701–709. https://doi.org/10.30812/matrik.v21i3.1439
De Wibowo Muhammad Sidik, A., Himawan Kusumah, I., Suryana, A., Artiyasa, M., & Pradiftha Junfithrana, A. (2020). Gambaran Umum Metode Klasifikasi Data Mining. FIDELITY : Jurnal Teknik Elektro, 2(2), 34–38. https://doi.org/https://doi.org/10.52005/fidelity.v2i2.111
Djabalul Lael, T. A., & Pramudito, D. A. (2023). Use of Data Mining for The Analysis of Consumer Purchase Patterns with The Fpgrowth Algorithm on Motor Spare Part Sales Transactions Data. IAIC Transactions on Sustainable Digital Innovation (ITSDI), 4(2), 128–136. https://doi.org/10.34306/itsdi.v4i2.582
Etiowo, G., & Okoronkwo, J. M. C. (2023). A Brief Survey: Data Mining Techniques and Application on Selected Sectors. International Journal of Innovative Science and Research Technology, 8(6), 1014–1018. https://doi.org/https://doi.org/10.5281/zenodo.8093226
Firmansyah, F., & Nurdiawan, O. (2023). Penerapan Data Mining Menggunakan Algoritma Frequent Pattern - Growth Untuk Menentukan Pola Pembelian Produk Chemicals. JATI: Jurnal Mahasiswa Teknik Informatika, 7(1), 547–551. https://doi.org/10.36040/jati.v7i1.6371
Gulo, F. E., Azhari, F. A., Setiawan, L., & Pratiwi, L. A. (2023). Penerapan Aturan Asosiasi di Darvina Mart untuk Menentukan Pola Pembelian Pelanggan. Journal of Industrial Innovation and Safety Engineering (JINSENG), 1(2), 92–100. https://doi.org/10.35718/jinseng.v1i2.897
Hakim, M. A., Prasetijo, A. B., & Eridani, D. (2023). Penerapan Data Mining Dengan Algoritma K-Means Clustering Penyewaan Alat-Alat Event Pada Studi Kasus CV. Dipo Rental Creativindo. Jurnal Teknik Komputer, 1(4), 148–155. https://doi.org/10.14710/jtk.v1i4.37011
Handayani, P. K., & Susanti, N. (2019). Analisis Kinerja Algoritma Frequent Pattern Growth (FP-Growth) Pada Penambangan Pola Asosiasi Data Transaksi. Indonesian Journal of Technology, Informatics and Science (IJTIS) DOI: …, 1(1), 9–12. https://doi.org/https://doi.org/10.24176/ijtis.v1i1.4596
Handayani, T., Sunaryo, M. A., Rinaldi, A. R., & Rohmat, C. L. (2024). Analisis Minat Beli Produk Fashion Menggunakan Algoritma FP-Growth (Frequent Pattern Grwoth). Jurnal Ilmiah Informatika Komputer, 29(1), 83–93. https://doi.org/10.35760/ik.2024.v29i1.10808
Herdyansyah, S., Hermaliani, E. H., Kurniawati, L., & Sri Rahayu, S. R. (2020). Analisa Metode Association Rule Menggunakan Algoritma Fp-Growth Terhadap Data Penjualan (Study Kasus Toko Berkah). Jurnal Khatulistiwa Informatika, 8(2), 127–133. https://doi.org/10.31294/jki.v8i2.9277
Lintang, & Lestari, M. (2023). Penerapan Algoritma FP-Growth Untuk Menentukan Pola Penjualan Toko Ellia Umami. Journal of Student Research (JSR), 1(3), 367–378. https://doi.org/https://doi.org/10.55606/jsr.v1i3.1267
Mariko, M. (2021). Perbandingan Algoritma Apriori Dan Algoritma Fp-Growth Untuk Rekomendasi Item Paket Pada Konten Promosi. Explore, 11(2), 24–28. https://doi.org/10.35200/explore.v11i2.438
Octaviani, A., & Dewi, P. (2020). Big Data di Perpustakaan dengan Memanfaatkan Data Mining. Anuva: Jurnal Kajian Budaya, Perpustakaan, Dan Informasi, 4(2), 223–230. https://doi.org/https://doi.org/10.14710/anuva.4.2.223-230
Purba, T. N., & Firdaus, D. (2021). Determination for Consumer Patterns in Beverage Product Sales Using the Frequent Pattern Growth Algorithm. IJISCS: International Journal of Information System and Computer Science, 5(2), 84–92. https://doi.org/10.56327/ijiscs.v5i2.982
Rahayu, N. D., Anshor, A. H., Afriantoro, I., & Halim Anshor, A. (2024). Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means Oleh : Penerapan Data Mining untuk Pemetaan Siswa Berprestasi menggunakan Metode Clustering K-Means. JUKI : Jurnal Komputer Dan Informatika, 6(1), 71–73. https://doi.org/https://doi.org/10.53842/juki.v6i1.474
Septiandito Saputra, A. (2021). Pengaruh Teknologi Informasi Pada Koperasi Di Era Industri 4.0. Transekonomika: Akuntansi, Bisnis Dan Keuangan, 1(5), 505–510. https://doi.org/10.55047/transekonomika.v1i5.77
Setiaji, Akbar, F., Abdillah, A., & Fachrizal, J. (2024). Implementasi Model Unified Modelling Language (UML) Pada Perancangan Sistem Informasi Data Kependudukan dan Bantuan Sosial. Jurnal Informatika Teknologi Dan Sains, 6(3), 549–558. https://doi.org/https://doi.org/10.51401/jinteks.v6i3.4305
Supriyadi, D. (2020). Penerapan Association Rule Mining Berbasis Algoritma Frequent Pattern Growth untuk Rekomendasi Penjualan. JATISI: Jurnal Teknik Informatika Dan Sistem Informasi, 7(2), 135–148. https://doi.org/10.35957/jatisi.v7i2.339
Takdirillah, R. (2020). Penerapan Data Mining Menggunakan Algoritma Apriori Terhadap Data Transaksi Sebagai Pendukung Informasi Strategi Penjualan. Edumatic : Jurnal Pendidikan Informatika, 4(1), 37–46. https://doi.org/10.29408/edumatic.v4i1.2081
Wandri, R., & Hanafiah, A. (2022). Analysis of Information Technology (IT) Goods Sales Patterns Using the FP-Growth Algorithm. IT Journal Research and Development, 6(2), 130–141. https://doi.org/10.25299/itjrd.2022.8155
Wijaya, K. N. (2020). Analisa Pola Frekuensi Keranjang Belanja Dengan Dengan Perbandingan Algoritma Fp-Growth (Frequent Pattern Growth) dan Eclat pada minimarket. JATISI: Jurnal Teknik Informatika Dan Sistem Informasi, 7(2), 364–373. https://doi.org/10.35957/jatisi.v7i2.380
Wijaya, K. N., Firsandaya Malik, R., Nurmaini, S., Komputer, M. I., Ilmu, F., & Unsri, K. (2020). Analisa Pola Frekuensi Keranjang Belanja Dengan Perbandingan Algoritma Fp-Growth (Frequent Pattern Growth) Dan Eclat Pada Minimarket. Jurnal Teknik Informatika Dan Sistem Informasi, 7(2), 364–4322. https://doi.org/https://doi.org/10.35957/jatisi.v7i2.380
Yanti, R., Maradjabessy, P. N., Qurtubi, & Rachmadewi, I. P. (2024). Determining the retail sales strategies using association rule mining. International Journal of Advances in Applied Sciences, 13(3), 530–538. https://doi.org/10.11591/ijaas.v13.i3.pp530-538
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Regifia Ningrum Nur Aulia, M Azhar Prabukusumo, Ajeng Hidayati

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




