Sentiment analysis of tourist reviews on google maps for pura besakih using machine learning algorithms

Authors

  • I Putu Gede Abdi Sudiatmika Politeknik Negeri Bali, Indonesia
  • Putu Satya Saputra Politeknik Negeri Bali, Indonesia
  • Rifky Lana Rahardian Institut Teknologi dan Bisnis Stikom Bali, Indonesia
  • Komang hari Santhi Dewi Institut Teknologi dan Bisnis Stikom Bali, Indonesia

DOI:

https://doi.org/10.35335/mandiri.v14i1.449

Keywords:

Cultural Heritageh, Machine Learning, Pura Besaki, Tourist Experience

Abstract

Tourist reviews on digital platforms have become a valuable source of information for understanding visitor experiences. This study applies sentiment analysis to 2,891 Google Maps reviews of Pura Besakih, Bali’s largest and most sacred temple, collected between January 2023 and December 2024. The aim is to assess overall visitor sentiment and identify factors influencing satisfaction and dissatisfaction. Reviews were preprocessed using a standardized pipeline that included translation, cleaning, tokenization, stopword removal, and stemming. Sentiment labeling was conducted using the Indonesian Sentiment Lexicon (InSet), followed by classification using six machine learning models: Support Vector Machine (SVM), K-Nearest Neighbor (KNN), Naive Bayes, Decision Tree, Random Forest, and Neural Network. The SVM model achieved the highest performance with an accuracy of 76.3% and F1-score of 55.68%. Thematic analysis revealed positive feedback highlighting the temple’s spiritual ambiance, architecture, and improved facilities, while negative sentiment was driven by issues such as unauthorized guides, misleading charges, and restricted access. These findings offer valuable insights for tourism stakeholders to improve visitor experience and support sustainable heritage tourism through data-driven decision-making.

References

Abrahams, N., Lambert, E. V., Marais, F., Toumpakari, Z., & Foster, C. (2021). Using social networks to scale up and sustain community-based programmes to improve physical activity and diet in low-income and middle-income countries: A scoping review protocol. BMJ Open, 11(9). https://doi.org/10.1136/bmjopen-2021-053586

Alauthman, M., Al-qerem, A., Sowan, B., Alsarhan, A., Eshtay, M., Aldweesh, A., & Aslam, N. (2023). Enhancing Small Medical Dataset Classification Performance Using GAN. Informatics, 10(1). https://doi.org/10.3390/informatics10010028

Amalia, D., Sofyan, R., & Tarigan, B. (2023). Types of Translation Errors in The Translation Feature of Local Guide Reviews on Google Map. Asian Journal of Engineering, Social and Health, 2(11). https://doi.org/10.46799/ajesh.v2i11.166

Anamisa, D. R., Jauhari, A., & Mufarroha, F. A. (2024). PERFORMANCE TEST OF NAIVE BAYES AND SVM METHODS ON CLASSIFICATION OF MALNUTRITION STATUS IN CHILDREN. Communications in Mathematical Biology and Neuroscience, 2024. https://doi.org/10.28919/cmbn/8429

Artayasa, I. P., Suda, I. K., & Wirawan, I. G. B. (2024). Upacara Mājar-ajar di Pura Agung Besakih: Konsep dan Implementasinya. Jurnal Penelitian Agama Hindu, 8(1). https://doi.org/10.37329/jpah.v8i1.2661

Azzahra, T. A., Winarsih, N. A. S., Saraswati, G. W., Saputra, F. O., Rohman, M. S., Ratmana, D. O., Pramunendar, R. A., & Shidik, G. F. (2024). Perbandingan Efektivitas Na�ve Bayes dan SVM dalam Menganalisis Sentimen Kebencanaan di Youtube. JURNAL MEDIA INFORMATIKA BUDIDARMA, 8(1). https://doi.org/10.30865/mib.v8i1.7186

Basendwah, M., Rahman, S., & Al-Sakkaf, M. A. (2024). Tourists’ satisfaction with Islamic attributes of destination: a systematic mapping study. In Journal of Islamic Marketing (Vol. 15, Nomor 5). https://doi.org/10.1108/JIMA-01-2023-0024

Chen, Q., Ragusa, E., Chaturvedi, I., Cambria, E., & Zunino, R. (2023). Text-Image Sentiment Analysis. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 13397 LNCS. https://doi.org/10.1007/978-3-031-23804-8_14

Cortez, N. J., Baldomero, M. J., Mendoza, A. R., Mallari, K. A., Benavidez, M. J., Gaffud, R., Hermosura, R. M. J., & Gaoat, M. (2024). Sustainability Practices of Agritourism in Diffun, Quirino. American Journal of Tourism and Hospitality, 2(1). https://doi.org/10.54536/ajth.v2i1.2409

Dash, D. P., Kolekar, M., Chakraborty, C., & Khosravi, M. R. (2024). Review of Machine and Deep Learning Techniques in Epileptic Seizure Detection using Physiological Signals and Sentiment Analysis. ACM Transactions on Asian and Low-Resource Language Information Processing, 23(1). https://doi.org/10.1145/3552512

Dzulkarnain, T., Ratnawati, D. E., & Rahayudi, B. (2024). Penggunaan Metode Naïve Bayes Classifier pada Analisis Sentimen Penilaian Masyarakat Terhadap Pelayanan Rumah Sakit di Malang. Jurnal Teknologi Informasi dan Ilmu Komputer, 11(5). https://doi.org/10.25126/jtiik.1077979

Hossain, M. S., & Rahman, M. F. (2023). Customer Sentiment Analysis and Prediction of Insurance Products’ Reviews Using Machine Learning Approaches. FIIB Business Review, 12(4). https://doi.org/10.1177/23197145221115793

Hossain, M. S., Rahman, M. F., Uddin, M. K., & Hossain, M. K. (2023). Customer sentiment analysis and prediction of halal restaurants using machine learning approaches. Journal of Islamic Marketing, 14(7). https://doi.org/10.1108/JIMA-04-2021-0125

Iqbal, M., Davy Wiranata, A., Suwito, R., & Faiz Ananda, R. (2023). Perbandingan Algoritma Naïve Bayes, KNN, dan Decision Tree terhadap Ulasan Aplikasi Threads dan Twitter. Media Online, 4(3).

Jain, V., Dhingra, A., Gupta, E., Takkar, I., Jain, R., & Islam, S. M. N. (2023). Influence of Land Surface Temperature and Rainfall on Surface Water Change: An Innovative Machine Learning Approach. Water Resources Management, 37(8). https://doi.org/10.1007/s11269-023-03476-2

Kirchner, F., Ono, Y., Albers, S., Junker, M., Fal, M. F., & Kircher, J. (2024). Arthroscopic subscapularis repair using the subscapularis interlocking (SICK)-stitch technique leads to restoration of clinical function with low complication and revision rates. JSES International, 8(1). https://doi.org/10.1016/j.jseint.2023.10.010

Manullang, O., Prianto, C., & Harani, N. H. (2023). ANALISIS SENTIMEN UNTUK MEMPREDIKSI HASIL CALON PEMILU PRESIDEN MENGGUNAKAN LEXICON BASED DAN RANDOM FOREST. JURNAL ILMIAH INFORMATIKA, 11(02). https://doi.org/10.33884/jif.v11i02.7987

Mohan Kumar, A. V., Suhas, M., & Fedrich, N. (2022). Sentiment Analysis on Twitter Data. In Cognitive Science and Technology. https://doi.org/10.1007/978-981-19-2350-0_43

Raditya, I. W. A., Darmawiguna, G. M., & Sindu, I. G. P. (2020). Pengembangan Virtual Reality untuk Digitalisasi Pura Penataran Agung di Pura Besakih. INSERT : Information System and Emerging Technology Journal, 1(1). https://doi.org/10.23887/insert.v1i1.25872

Razali, M. N., Manaf, S. A., Hanapi, R. B., Salji, M. R., Chiat, L. W., & Nisar, K. (2024). Enhancing Minority Sentiment Classification in Gastronomy Tourism: A Hybrid Sentiment Analysis Framework with Data Augmentation, Feature Engineering and Business Intelligence. IEEE Access, 12. https://doi.org/10.1109/ACCESS.2024.3362730

Rifa’i, A., Sujaini, H., & Prawira, D. (2021). Sentiment Analysis Objek Wisata Kalimantan Barat Pada Google Maps Menggunakan Metode Naive Bayes. Jurnal Edukasi dan Penelitian Informatika (JEPIN), 7(3). https://doi.org/10.26418/jp.v7i3.48132

Rodríguez-Ibánez, M., Casánez-Ventura, A., Castejón-Mateos, F., & Cuenca-Jiménez, P. M. (2023). A review on sentiment analysis from social media platforms. In Expert Systems with Applications (Vol. 223). https://doi.org/10.1016/j.eswa.2023.119862

Rofiqi, M. A., Fauzan, A. C., Agustin, A. P., & Saputra, A. A. (2019). Implementasi Term-Frequency Inverse Document Frequency (TF-IDF) Untuk Mencari Relevansi Dokumen Berdasarkan Query. ILKOMNIKA: Journal of Computer Science and Applied Informatics, 1(2). https://doi.org/10.28926/ilkomnika.v1i2.18

Septiani, D., & Isabela, I. (2022). ANALISIS TERM FREQUENCY INVERSE DOCUMENT FREQUENCY (TF-IDF) DALAM TEMU KEMBALI INFORMASI PADA DOKUMEN TEKS. SINTESIA: Jurnal Sistem dan Teknologi Informasi Indonesia, 1(1).

Setyawan, D. A., & Fauzi, D. N. (2022). IMPLEMENTASI FUNGSI DISPERSION RATIO PADA PROSES SPLITING ATRIBUT ALGORITMA DECISION TREE. Dkk) MADANI: Jurnal Ilmiah Multidisiplin, 2(2).

Strong, M. (2019). Google Maps. In Geography Today: An Encyclopedia of Concepts, Issues, and Technology. https://doi.org/10.5120/ijca2019918791

Sudiatmika, I. P. G. A., Dewi, K. H. S., & Jayaningsih, A. A. R. (2021). Garage Geographic Information System Using Haversine Method Based on Android. 3rd International Conference on Cybernetics and Intelligent Systems, ICORIS 2021. https://doi.org/10.1109/ICORIS52787.2021.9649580

WIBAWA, G. A. S., TASTRAWATI, N. K. T., & KENCANA, E. N. (2023). STRATEGI PENGELOLAAN PURA AGUNG BESAKIH SEBAGAI DESTINASI WISATA BUDAYA: PENDEKATAN GAME THEORY. E-Jurnal Matematika, 12(1). https://doi.org/10.24843/mtk.2023.v12.i01.p394

Widodo, S., & Hartono, B. (2023). Analisis Sentimen Pengguna Google Terhadap Destinasi Wisata Di Kota Semarang Menggunakan Metode K-Nearest Neighbor. Progresif: Jurnal Ilmiah Komputer, 19(2). https://doi.org/10.35889/progresif.v19i2.1364

Wijaya, W. H., Oetama, R. S., & Halim, F. A. (2023). Implementation of Backpropagation Method with MLPClassifier to Face Mask Detection Model. IJNMT (International Journal of New Media Technology), 9(2). https://doi.org/10.31937/ijnmt.v9i2.2693

Witjaksana, E. C. P., Saedudin, R. R., & Widartha, V. P. (2021). Perbandingan Akurasi Algoritma Random Forest dan Algoritma Artificial Neural Network untuk Klasifikasi Penyakit Diabetes. e-Proceeding of Engineering, 8(5).

Wiwin, W., Ardika, W., & Putra, N. (2020). Collaborative Governance: As a Conceptual Model of Destination Management in the Besakih Temple Area, Karangasem Regency, Bali Province. JOURNAL OF TOURISM AND HOSPITALITY MANAGEMENT, 8(1). https://doi.org/10.15640/jthm.v8n1a8

Yamali, F. R., & Putri, R. N. (2020). Dampak Covid-19 Terhadap Ekonomi Indonesia. Ekonomis: Journal of Economics and Business, 4(2). https://doi.org/10.33087/ekonomis.v4i2.179

Yang, L., Li, Y., Wang, J., & Sherratt, R. S. (2020). Sentiment Analysis for E-Commerce Product Reviews in Chinese Based on Sentiment Lexicon and Deep Learning. IEEE Access, 8. https://doi.org/10.1109/ACCESS.2020.2969854

Yu, Z., Di, L., Shrestha, S., Zhang, C., Guo, L., Qamar, F., & Mayer, T. J. (2023). RiceMapEngine: A Google Earth Engine-Based Web Application for Fast Paddy Rice Mapping. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 16. https://doi.org/10.1109/JSTARS.2023.3290677

Downloads

Published

2025-07-30

How to Cite

Sudiatmika, I. P. G. A., Saputra, P. S., Rahardian, R. L., & Dewi, K. hari S. (2025). Sentiment analysis of tourist reviews on google maps for pura besakih using machine learning algorithms . Jurnal Mandiri IT, 14(1), 149–158. https://doi.org/10.35335/mandiri.v14i1.449