Application of expert system using certainty factor method to identify diseases in rice plants
DOI:
https://doi.org/10.35335/mandiri.v12i4.280Keywords:
Agricultural Technology, Certainty Factor Method, Disease Identification, Expert System, Rice PlantsAbstract
This article explores the application of expert systems using certainty factor methods for disease identification in rice crops, highlighting the importance of information technology integration in agriculture. The study aims to develop a system that allows quick and accurate identification of rice disease, using certainty factor methods that are effective in dealing with data uncertainty. This study used a quantitative approach with a quasi-experimental design. The results indicate an effective system for identifying diseases, with significant implications for supporting farmers and improving food security. Suggestions for future research include system integration with mobile applications and real-time data analysis to improve system accessibility and applicability in modern agricultural practices.
References
Ahad, M. T., Li, Y., Song, B., & Bhuiyan, T. (2023). Comparison of CNN-based deep learning architectures for rice diseases classification. Artificial Intelligence in Agriculture, 9, 22–35.
Alqahtani, Y., Nawaz, M., Nazir, T., Javed, A., Jeribi, F., & Tahir, A. (2023). An improved deep learning approach for localization and recognition of plant leaf diseases. Expert Systems with Applications, 230, 120717.
Arifin, M., & Eka Yulia Retnani, W. (2019). Arifin et al., Penerapan Metode Certainty Factor Untuk Sistem Pakar Diagnosis Hama Penerapan Metode Certainty Factor Untuk Sistem Pakar Diagnosis Hama Dan Penyakit Pada Tanaman Tembakau (Application Of Certainty Factor Method For Expert System Diagnosis Of Pests And Diseases On Tobacco).
Béné, C., Riba, A., & Wilson, D. (2020). Impacts of resilience interventions–evidence from a quasi-experimental assessment in Niger. International Journal of Disaster Risk Reduction, 43, 101390.
Bianome, R. M., Nabuasa, Y. Y., & Sina, D. R. (2020). DIAGNOSA HAMA DAN PENYAKIT PADA TANAMAN PADI MENGGUNAKAN METODE NAIVE BAYES DAN K-NEAREST NEIGHBOR. Jurnal Komputer Dan Informatika, 8(2), 156–162. https://doi.org/10.35508/jicon.v8i2.2906
Chhetri, T. R., Hohenegger, A., Fensel, A., Kasali, M. A., & Adekunle, A. A. (2023). Towards improving prediction accuracy and user-level explainability using deep learning and knowledge graphs: A study on cassava disease. Expert Systems with Applications, 233, 120955.
Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1), 1–13.
Eslam, M., Sarin, S. K., Wong, V. W.-S., Fan, J.-G., Kawaguchi, T., Ahn, S. H., Zheng, M.-H., Shiha, G., Yilmaz, Y., & Gani, R. (2020). The Asian Pacific Association for the Study of the Liver clinical practice guidelines for the diagnosis and management of metabolic associated fatty liver disease. Hepatology International, 14, 889–919.
Haider, W., Rehman, A.-U., Durrani, N. M., & Rehman, S. U. (2021). A generic approach for wheat disease classification and verification using expert opinion for knowledge-based decisions. IEEE Access, 9, 31104–31129.
Hamedan, F., Orooji, A., Sanadgol, H., & Sheikhtaheri, A. (2020). Clinical decision support system to predict chronic kidney disease: A fuzzy expert system approach. International Journal of Medical Informatics, 138, 104134.
Hosseini, S., & Ivanov, D. (2020). Bayesian networks for supply chain risk, resilience and ripple effect analysis: A literature review. Expert Systems with Applications, 161, 113649.
Jain, G., Mittal, D., Thakur, D., & Mittal, M. K. (2020). A deep learning approach to detect Covid-19 coronavirus with X-Ray images. Biocybernetics and Biomedical Engineering, 40(4), 1391–1405.
Jiang, C., Fan, W., Yu, N., & Liu, E. (2021). Spatial modeling of gully head erosion on the Loess Plateau using a certainty factor and random forest model. Science of the Total Environment, 783, 147040.
Ju, L., Wang, X., Wang, L., Mahapatra, D., Zhao, X., Zhou, Q., Liu, T., & Ge, Z. (2022). Improving medical images classification with label noise using dual-uncertainty estimation. IEEE Transactions on Medical Imaging, 41(6), 1533–1546.
Karthikeyan, L., Chawla, I., & Mishra, A. K. (2020). A review of remote sensing applications in agriculture for food security: Crop growth and yield, irrigation, and crop losses. Journal of Hydrology, 586, 124905.
Li, D., Wang, R., Xie, C., Liu, L., Zhang, J., Li, R., Wang, F., Zhou, M., & Liu, W. (2020). A recognition method for rice plant diseases and pests video detection based on deep convolutional neural network. Sensors, 20(3), 578.
Maxwell, A. E., Warner, T. A., & Guillén, L. A. (2021). Accuracy assessment in convolutional neural network-based deep learning remote sensing studies—Part 1: Literature review. Remote Sensing, 13(13), 2450.
Orlando, F., Alali, S., Vaglia, V., Pagliarino, E., Bacenetti, J., & Bocchi, S. (2020). Participatory approach for developing knowledge on organic rice farming: Management strategies and productive performance. Agricultural Systems, 178, 102739.
Patil, R. R., & Kumar, S. (2022). Rice-fusion: A multimodality data fusion framework for rice disease diagnosis. IEEE Access, 10, 5207–5222.
Ristaino, J. B., Anderson, P. K., Bebber, D. P., Brauman, K. A., Cunniffe, N. J., Fedoroff, N. V, Finegold, C., Garrett, K. A., Gilligan, C. A., & Jones, C. M. (2021). The persistent threat of emerging plant disease pandemics to global food security. Proceedings of the National Academy of Sciences, 118(23), e2022239118.
Santhoshkumar, S., & Dhinesh Babu, L. D. (2020). Earlier detection of rumors in online social networks using certainty-factor-based convolutional neural networks. Social Network Analysis and Mining, 10(1), 20.
Santra, D., Basu, S. K., Mandal, J. K., & Goswami, S. (2020). Rough set based lattice structure for knowledge representation in medical expert systems: Low back pain management case study. Expert Systems with Applications, 145, 113084.
Seoni, S., Jahmunah, V., Salvi, M., Barua, P. D., Molinari, F., & Acharya, U. R. (2023). Application of uncertainty quantification to artificial intelligence in healthcare: A review of last decade (2013–2023). Computers in Biology and Medicine, 107441.
Sethy, P. K., Barpanda, N. K., Rath, A. K., & Behera, S. K. (2020). Deep feature based rice leaf disease identification using support vector machine. Computers and Electronics in Agriculture, 175, 105527.
Shahzad, A., Ullah, S., Dar, A. A., Sardar, M. F., Mehmood, T., Tufail, M. A., Shakoor, A., & Haris, M. (2021). Nexus on climate change: Agriculture and possible solution to cope future climate change stresses. Environmental Science and Pollution Research, 28, 14211–14232.
Shan, A., Pan, J., Kang, K. J., Pan, M., Wang, G., Wang, M., He, Z., & Yang, X. (2021). Effects of straw return with N fertilizer reduction on crop yield, plant diseases and pests and potential heavy metal risk in a Chinese rice paddy: A field study of 2 consecutive wheat-rice cycles. Environmental Pollution, 288, 117741.
Sulistiyanto, S., Saputri, T. A., & Noviyanti, N. (2022). Deteksi Dini Hama dan Penyakit Padi Menggunakan Metode Certainty Factor. JURIKOM (Jurnal Riset Komputer), 9(1), 48. https://doi.org/10.30865/jurikom.v9i1.3778
Talukdar, S., Naikoo, M. W., Mallick, J., Praveen, B., Sharma, P., Islam, A. R. M. T., Pal, S., & Rahman, A. (2022). Coupling geographic information system integrated fuzzy logic-analytical hierarchy process with global and machine learning based sensitivity analysis for agricultural suitability mapping. Agricultural Systems, 196, 103343.
Viana, C. M., Freire, D., Abrantes, P., Rocha, J., & Pereira, P. (2022). Agricultural land systems importance for supporting food security and sustainable development goals: A systematic review. Science of the Total Environment, 806, 150718.
Yağcı, M. (2022). Educational data mining: prediction of students’ academic performance using machine learning algorithms. Smart Learning Environments, 9(1), 11.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Isni Azmi, Gunawan Gunawan, Sawaviyya Anandianskha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.