Analyzing public sentiment on youtube comments regarding the free lunch policy using the Support Vector Machine (SVM) algorithm
DOI:
https://doi.org/10.35335/mandiri.v14i1.434Keywords:
Lunch Program, Sentiment Analysis, Support Vector Machine (SVM), TF-IDF, YoutubeAbstract
The advancement of information technology and social media has reshaped how individuals express their opinions on public policies. YouTube has emerged as a major platform where public sentiment is openly shared, including reactions to the government’s Free Lunch Program for elementary school students. This study aims to analyze public sentiment toward the policy using the Support Vector Machine (SVM) algorithm with both linear and Radial Basis Function (RBF) kernels. A total of 1,883 YouTube comments were collected and manually labeled into three sentiment categories: positive, negative, and neutral. The preprocessing steps included cleansing, case folding, normalization, tokenization, stopword removal, and stemming, followed by TF-IDF transformation. Model performance was evaluated using accuracy, precision, recall, and F1-score metrics, and validated using 10-Fold Cross Validation to ensure result consistency. The findings indicate that the SVM model with RBF kernel and 10-fold cross-validation achieved the highest accuracy at 81.46%. However, the linear kernel model provided a more balanced performance with superior precision, recall, and F1-score. These results highlight the importance of choosing the right kernel and validation strategy in developing sentiment analysis models, especially when dealing with imbalanced social media data.
References
Ansori, Y., & Holle, K. F. H. (2022). Perbandingan Metode Machine Learning dalam Analisis Sentimen Twitter. Jurnal Sistem Dan Teknologi Informasi (JustIN), 10(4), 429. https://doi.org/10.26418/justin.v10i4.51784
Brownlee, J. (2023). A Gentle Introduction to k-fold Cross-Validation. https://machinelearningmastery.com/k-fold-cross-validation/?utm_source=chatgpt.com
Efraim, D. A. (2023). Analisis Sentimen Pada Sosial Media Instagram Menggunakan Algoritma Naive Bayes ( Studi Kasus : Timnas Futsal Indonesia ). April 2012, 498–509.
Gunadi, G. A., Raharjo, J. S., & Setianingsih, S. (2025). Analisis Kemanfaatan Kebijakan Program Makan Siang Gratis bagi Peserta Didik dan Pemerintahan. 9(1), 7403–7411.
Hermawan, A., Jowensen, I., Junaedi, J., & Edy. (2023). Implementasi Text-Mining untuk Analisis Sentimen pada Twitter dengan Algoritma Support Vector Machine. JST (Jurnal Sains Dan Teknologi), 12(1), 129–137. https://doi.org/10.23887/jstundiksha.v12i1.52358
Imaddudin, S., Astuti, I., & Ruhama, S. (2025). Studi Sentimen Masyarakat terhadap PSSI di Era Erick Thohir menggunakan Algoritma Support Vector Machine ( SVM ) pada Media Sosial X. 1(8), 1003–1013.
Liu, H., Chen, X., & Liu, X. (2022). A Study of the Application of Weight Distributing Method Combining Sentiment Dictionary and TF-IDF for Text Sentiment Analysis. IEEE Access, 10, 32280–32289. https://doi.org/10.1109/ACCESS.2022.3160172
Mufid, A. (2023). Google Colab: Pengertian, Keuntungan, dan Cara Menggunakan. http://blog.rumahweb.com/google-colab-adalah/
Muttaqin, Wahyu Wijaya Widiyanto, M. M., Green Ferry Mandias, Stenly Richard Pungus, A. W., Wiranti Kusuma Hapsari, S. A. H., Aslam Fatkhudin, Pasnur, E. F. B., & Mochammad Anshori, Suryani, N. S. (2023). Pengenalan Data Mining (Issue July).
Muzaki, A., Febriana, V., & Cholifah, W. N. (2024). Analisis Sentimen Pada Ulasan Produk di E-Commerce dengan Metode Naive Bayes. Jurnal Riset Dan Aplikasi Mahasiswa Informatika (JRAMI), 5(4), 758–765. https://doi.org/10.30998/jrami.v5i4.9647
Negi, M., Vishwakarma, K., & Badhani, P. (2021). Kajian Analisis Sentimen Twitter Menggunakan Algoritma Machine Learning di Studi Analisis Sentimen Twitter Menggunakan Mesin Belajar Algoritma di Python. https://doi.org/10.5120/ijca20
Nurkholis, A., Alita, D., & Munandar, A. (2022). Comparison of Kernel Support Vector Machine Multi-Class in PPKM Sentiment Analysis on Twitter. Jurnal RESTI, 6(2), 227–233. https://doi.org/10.29207/resti.v6i2.3906
Palupi, I. R., Rachmawati, V. N., & Prawiningdyah, Y. (2020). 632 HIGEIA 4 (4) (2020) HIGEIA JOURNAL OF PUBLIC HEALTH RESEARCH AND DEVELOPMENT Pemenuhan Gizi dari Penyelenggaraan Makan Siang Sekolah dan Konsentrasi Siswa Sekolah Dasar. HIGEIA Journal of Public Health Reseacrch and Development, 4(4), 632–644.
Permana, A. A., Fahrezi, M. F., Kristiyanti, D. A., & Sihotang, M. (2021). Sentimen Analisis Opini Masyarakat Pada Media Sosial Twitter Terhadap Vaksin Berbayar Menggunakan Metode Naïve Bayes Classifier (Nbc). Jurnal Teknik, 10(2), 84–92. https://doi.org/10.31000/jt.v10i2.5471
Pratama, J. A., Suprijadi, Y., & Zulhanif, Z. (2017). The Analisis Sentimen Sosial Media Twitter Dengan Algoritma Machine Learning Menggunakan Software R. Jurnal Fourier, 6(2), 85. https://doi.org/10.14421/fourier.2017.62.85-89
Rahardi, M., Aminuddin, A., Abdulloh, F. F., & Nugroho, R. A. (2022). Sentiment Analysis of Covid-19 Vaccination using Support Vector Machine in Indonesia. International Journal of Advanced Computer Science and Applications, 13(6), 534–539. https://doi.org/10.14569/IJACSA.2022.0130665
Rakarahayu Putri, R., & Cahyono, N. (2024). Analisis Sentimen Komentar Masyarakat Terhadap Pelayanan Publik Pemerintah Dki Jakarta Dengan Algoritma Super Vector Machine Dan Naive Bayes. JATI (Jurnal Mahasiswa Teknik Informatika), 8(2), 2363–2371. https://doi.org/10.36040/jati.v8i2.9472
Retnoningsih, E., & Pramudita, R. (2020). Mengenal Machine Learning Dengan Teknik Supervised Dan Unsupervised Learning Menggunakan Python. Bina Insani Ict Journal, 7(2), 156. https://doi.org/10.51211/biict.v7i2.1422
Safitri, T., Umaidah, Y., & Maulana, I. (2023). Analisis Sentimen Pengguna Twitter Terhadap Grup Musik BTS Menggunakan Algoritma Support Vector Machine. Journal of Applied Informatics and Computing, 7(1), 28–35. https://doi.org/10.30871/jaic.v7i1.5039
Safra, K. K., & Zuliarso, E. (2025). Analisis Sentimen Terhadap Pelaksanaan Pilkada 2024 Pada Media Sosial Youtube Menggunakan Metode Decision Tree. Jurnal Informatika Teknologi Dan Sains (Jinteks), 7(1), 117–126. https://doi.org/10.51401/jinteks.v7i1.5295
Sebastian, D. F., Sulistiani, H., & Isnain, A. R. (2024). Sentiment Analysis of Public Opinion on the Right of Inquiry in Indonesia in 2024 Using the Support Vector Machine ( Svm ) Method Analisis Sentimen Opini Masyarakat Mengenai Hak Angket Di Indonesia Tahun 2024 Menggunakan Metode Support Vector Machine ( Sv. 5(4), 1025–1034.
Suryadevara, C. K., & Services, R. S. (2023). INSIGHTS FROM THE TUBE : ANALYZING YOUTUBE COMMENTS WITH International Engineering Journal for Research & Development Issue 5 INSIGHTS FROM THE TUBE : ANALYZING YOUTUBE COMMENTS WITH E-ISSN NO : 2349-0721. September 2016.
Wicaksono, M. H., Purbolaksono, M. D., & Faraby, S. Al. (2023). Perbandingan Algoritma Machine Learning untuk Analisis Sentimen Berbasis Aspek pada Review Female Daily. EProceedings of Engineering, 10(3), 3591–3600.
Widayani, W., & Harliana, H. (2021). Analisis Support Vector Machine Untuk Pemberian Rekomendasi Penundaan Biaya Kuliah Mahasiswa. Jurnal Sains Dan Informatika, 7(1), 20–27. https://doi.org/10.34128/jsi.v7i1.268
Zain, H. H., Awannga, R. M., & Rahayu, W. I. (2023). Perbandingan Model Svm, Knn Dan Naïve Bayes Untuk Analisis Sentiment Pada Data Twitter: Studi Kasus Calon Presiden 2024. JIMPS: Jurnal Ilmiah Mahasiswa Pendidikan Sejarah, 8(3), 2083–2093. https://jim.usk.ac.id/sejarah
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Linda Septiana, Verdy Yasin, Anton Zulkarnain Sianipar

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.




