Enhancing Energy Efficiency and Power Output in Synchronous Generators through Neodymium Magnet Integration

Authors

  • Zacheus Jhope Vehicle Fakultas Teknik dan Ilmu Komputer, Universitas Kristen Krida Wacana (Ukrida)

Keywords:

Neodymium magnets, Synchronous generators, Energy efficiency, Power output, Magnetic properties

Abstract

This research investigates the impact of integrating neodymium magnets into synchronous generators on energy efficiency and performance. Neodymium magnets, known for their high magnetic flux density, strong coercivity, and excellent thermal stability, offer potential enhancements over traditional ferrite magnets. Through a combination of experimental studies, computational simulations, and analytical evaluations, this study demonstrates that synchronous generators equipped with neodymium magnets achieve an 8-12% increase in energy efficiency and a 10-15% increase in power output. The superior magnetic properties of neodymium magnets facilitate more effective energy conversion and reduce operational losses, ensuring consistent performance even under challenging conditions. However, the adoption of neodymium magnets faces several challenges, including high initial costs, environmental impacts from rare-earth element extraction, technical design adaptations, and supply chain vulnerabilities. Despite these hurdles, the significant performance benefits of neodymium magnets present a compelling case for their integration into synchronous generators, promising more efficient, reliable, and sustainable power generation systems.

References

Cheema, K. M. (2020). A comprehensive review of virtual synchronous generator. International Journal of Electrical Power & Energy Systems, 120, 106006.

Coey, J. M. D. (2020). Perspective and prospects for rare earth permanent magnets. Engineering, 6(2), 119–131.

Cui, J., Kramer, M., Zhou, L., Liu, F., Gabay, A., Hadjipanayis, G., Balasubramanian, B., & Sellmyer, D. (2018). Current progress and future challenges in rare-earth-free permanent magnets. Acta Materialia, 158, 118–137.

Duan, Y., & Ionel, D. M. (2013). A review of recent developments in electrical machine design optimization methods with a permanent-magnet synchronous motor benchmark study. IEEE Transactions on Industry Applications, 49(3), 1268–1275.

Eklund, P., Sjökvist, S., Eriksson, S., & Leijon, M. (2014). A complete design of a rare earth metal-free permanent magnet generator. Machines, 2(2), 120–133.

Galioto, S. J., Reddy, P. B., El-Refaie, A. M., & Alexander, J. P. (2014). Effect of magnet types on performance of high-speed spoke interior-permanent-magnet machines designed for traction applications. IEEE Transactions on Industry Applications, 51(3), 2148–2160.

Gundogdu, T., & Komurgoz, G. (2013). The Impact of the selection of permanent magnets on the design of permanent magnet machines-a case study: permanent magnet synchronous machine design with high efficiency. Przegląd Elektrotechniczny, 89(3a), 103–108.

Gutfleisch, O., Willard, M. A., Brück, E., Chen, C. H., Sankar, S. G., & Liu, J. P. (2011). Magnetic materials and devices for the 21st century: stronger, lighter, and more energy efficient. Advanced Materials, 23(7), 821–842.

Hernández-Alonso, M. D., Fresno, F., Suárez, S., & Coronado, J. M. (2009). Development of alternative photocatalysts to TiO 2: challenges and opportunities. Energy & Environmental Science, 2(12), 1231–1257.

Keith, J. A., Vassilev-Galindo, V., Cheng, B., Chmiela, S., Gastegger, M., Muller, K.-R., & Tkatchenko, A. (2021). Combining machine learning and computational chemistry for predictive insights into chemical systems. Chemical Reviews, 121(16), 9816–9872.

Kumari, A., & Sahu, S. K. (2023). A comprehensive review on recycling of critical raw materials from spent neodymium iron boron (NdFeB) magnet. Separation and Purification Technology, 123527.

Leonel, A. G., Mansur, A. A. P., & Mansur, H. S. (2021). Advanced functional nanostructures based on magnetic iron oxide nanomaterials for water remediation: a review. Water Research, 190, 116693.

Li, M., Pal, A., Aghakhani, A., Pena-Francesch, A., & Sitti, M. (2022). Soft actuators for real-world applications. Nature Reviews Materials, 7(3), 235–249.

McCallum, R. W., Lewis, L. H., Skomski, R., Kramer, M. J., & Anderson, I. E. (2014). Practical aspects of modern and future permanent magnets. Annual Review of Materials Research, 44, 451–477.

Montojo Villasanta, J., & Maqueda Viñas, M. (2014). Congestion Identification in a Radio Access Transport Network.

München, D. D., & Veit, H. M. (2017). Neodymium as the main feature of permanent magnets from hard disk drives (HDDs). Waste Management, 61, 372–376.

Murataliyev, M., Degano, M., Di Nardo, M., Bianchi, N., & Gerada, C. (2022). Synchronous reluctance machines: A comprehensive review and technology comparison. Proceedings of the IEEE, 110(3), 382–399.

Oyedepo, S. O. (2014). Towards achieving energy for sustainable development in Nigeria. Renewable and Sustainable Energy Reviews, 34, 255–272.

Özdemir, M. S., Ocak, C., & Dalcalı, A. (2021). Permanent magnet wind generators: neodymium vs. ferrite magnets. 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), 1–6.

Petrov, I., & Pyrhonen, J. (2012). Performance of low-cost permanent magnet material in PM synchronous machines. IEEE Transactions on Industrial Electronics, 60(6), 2131–2138.

Rademaker, J. H., Kleijn, R., & Yang, Y. (2013). Recycling as a strategy against rare earth element criticality: a systemic evaluation of the potential yield of NdFeB magnet recycling. Environmental Science & Technology, 47(18), 10129–10136.

RINCON GONZALEZ, W. J. (2022). Design of a permanent magnet direct recycling line: a comprehensive approach towards a circular economy.

Savvidou, G., & Johnsson, F. (2023). Material Requirements, Circularity Potential and Embodied Emissions Associated with Wind Energy. Sustainable Production and Consumption, 40, 471–487.

Smith, B. J., Riddle, M. E., Earlam, M. R., Iloeje, C., & Diamond, D. (2022). Rare earth permanent magnets: supply chain deep dive assessment. USDOE Office of Policy (PO), Washington DC (United States).

Zhao, S., Wang, N., Li, R., Gao, B., Shao, B., & Song, S. (2019). Sub-synchronous control interaction between direct-drive PMSG-based wind farms and compensated grids. International Journal of Electrical Power & Energy Systems, 109, 609–617.

Downloads

Published

2025-04-30

How to Cite

Vehicle, Z. J. (2025). Enhancing Energy Efficiency and Power Output in Synchronous Generators through Neodymium Magnet Integration. Jurnal Mekintek : Jurnal Mekanikal, Energi, Industri, Dan Teknologi, 16(1), 38–47. Retrieved from https://ejournal.isha.or.id/index.php/Mekintek/article/view/350