Optimization of Ilmenite Conversion to High-Purity Titanium Dioxide (TiO₂) in the Ternary System TiO₂-Fe₂O₃-Na₂O
Keywords:
Ilmenite, Titanium Dioxide (TiO₂), Sodium Oxide (Na₂O), Purity, Phase TransitionAbstract
This research investigates the conversion of ilmenite (FeTiO₃) to titanium dioxide (TiO₂) in the ternary system TiO₂-Fe₂O₃-Na₂O, focusing on improving TiO₂ yield, purity, and quality for industrial applications. The study explores the effect of sodium oxide (Na₂O) as a flux to facilitate the removal of iron oxide (Fe₂O₃) impurities, which often degrade TiO₂'s optical and chemical properties. Through a series of experiments varying Na₂O concentrations and temperatures (900-1200°C), the research demonstrates that Na₂O enhances TiO₂ formation by promoting phase transitions and accelerating the separation of iron from titanium. Optimal conditions (5% Na₂O at 1100-1200°C) resulted in high-purity TiO₂ (up to 99%) with yields reaching 95%, while reducing iron oxide contamination. This study provides valuable insights into the reaction mechanisms and optimal parameters for producing high-quality TiO₂, with significant implications for its use in pigments, coatings, and advanced materials where purity and performance are critical. The findings contribute to more efficient, scalable methods for TiO₂ production from ilmenite, benefiting industries dependent on this essential material.
References
Andrady, A. L., Pandey, K. K., & Heikkilä, A. M. (2019). Interactive effects of solar UV radiation and climate change on material damage. Photochemical & Photobiological Sciences, 18(3), 804–825.
Bibri, S. E., & Krogstie, J. (2020). Environmentally data-driven smart sustainable cities: Applied innovative solutions for energy efficiency, pollution reduction, and urban metabolism. Energy Informatics, 3(1), 29.
Blanchart, P. (2018). Extraction, properties and applications of titania. Industrial Chemistry of Oxides for Emerging Applications, 10, 255–309.
Cronin, P. (2012). Incorporation of nanoparticles of titanium dioxide into thermoplastic textiles. University of Limerick.
Crutchley, E. B. (2014). Innovation Trends in Plastics Decoration and Surface Treatment. Smithers Rapra.
Davids, W. (2011). Advanced Ti–based AB and AB2 hydride forming materials.
De Vito, C., Ferrini, V., Mignardi, S., Cagnetti, M., & Leccese, F. (2012). Progress in carbon dioxide sequestration via carbonation of aqueous saline wastes. Periodico Di Mineralogia, 81(3), 333–344.
Diebold, M. P. (2020). Optimizing the benefits of TiO2 in paints. Journal of Coatings Technology and Research, 17(1), 1–17.
Elmarzugi, N. A., Keleb, E. I., Mohamed, A. T., Issa, Y. S., Hamza, A. M., Layla, A. A., Salama, M., & Bentaleb, A. M. (2013). The relation between sunscreen and skin pathochanges mini review. International Journal of Pharmaceutical Science Invention, 2(7), 43–52.
Gázquez, M. J., Bolívar, J. P., Garcia-Tenorio, R., & Vaca, F. (2014). A review of the production cycle of titanium dioxide pigment. Materials Sciences and Applications, 2014.
Kapoor, D., Maheshwari, R., Verma, K., Sharma, S., Ghode, P., & Tekade, R. K. (2020). Coating technologies in pharmaceutical product development. In Drug delivery systems (pp. 665–719). Elsevier.
Khabir, Z. (2019). Transdermal Penetration of Photoluminescent Nanoparticles in Human Skin. Macquarie University.
Lee, R. Bin. (2018). Photo-catalytic degradation of dye by using raw and pre-treated ilmenite/Lee Ru Bin. University of Malaya.
Liu, W., Lü, L., Yue, H., Liang, B., & Li, C. (2017). Combined production of synthetic rutile in the sulfate TiO2 process. Journal of Alloys and Compounds, 705, 572–580.
Magalhaes, P., Andrade, L., Nunes, O. C., & Mendes, A. (2017). Titanium dioxide photocatalysis: Fundamentals and application on photoinactivation. Reviews on Advanced Materials Science, 51(2).
Musial, J., Krakowiak, R., Mlynarczyk, D. T., Goslinski, T., & Stanisz, B. J. (2020). Titanium dioxide nanoparticles in food and personal care products—What do we know about their safety? Nanomaterials, 10(6), 1110.
Nasr, M., Eid, C., Habchi, R., Miele, P., & Bechelany, M. (2018). Recent progress on titanium dioxide nanomaterials for photocatalytic applications. ChemSusChem, 11(18), 3023–3047.
Padmanabhan, N. T., & John, H. (2020). Titanium dioxide based self-cleaning smart surfaces: A short review. Journal of Environmental Chemical Engineering, 8(5), 104211.
Parrino, F., & Palmisano, L. (2020). Titanium dioxide (TiO2) and its applications. elsevier.
Rao, S. R. (2013). Surface chemistry of froth flotation: Volume 1: Fundamentals. Springer Science & Business Media.
Sharma, S., Sharma, R. K., Gaur, K., Cátala Torres, J. F., Loza-Rosas, S. A., Torres, A., Saxena, M., Julin, M., & Tinoco, A. D. (2019). Fueling a hot debate on the application of TiO2 nanoparticles in sunscreen. Materials, 12(14), 2317.
Thompson, T. L., & Yates, J. T. (2006). Surface science studies of the photoactivation of TiO2 new photochemical processes. Chemical Reviews, 106(10), 4428–4453.
Topçu, I. B., Akkan, E., Uygunoğlu, T., & Çalişkan, K. (2020). Self-cleaning concretes: an overview. J. Cem. Based Compos, 2, 6–12.
Toropov, N. A. (2012). High-Temperature Chemistry of Silicates and Other Oxide Systems/Vysokotemperaturnaya Khimiya Silikatnykh I Drugikh Okisnykh Sistem/Bьicoкotemпepatуphaя Xиmия Cиликathьix И Дpугиx Oкиchьix| Cиctem. Springer Science & Business Media.
Wang, Y., Huang, Z., Gurney, R. S., & Liu, D. (2019). Superhydrophobic and photocatalytic PDMS/TiO2 coatings with environmental stability and multifunctionality. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 561, 101–108.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Robie Wilson Astroha

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.