Expert system for diagnosing pests and diseases of shallot plants with naïve bayes method

Authors

  • Sarif Surorejo STMIK YMI Tegal, Indonesia
  • Muhammad Syifa Albana STMIK YMI Tegal, Indonesia
  • Nugroho Adhi Santoso STMIK YMI Tegal, Indonesia
  • Gunawan Gunawan STMIK YMI Tegal, Indonesia

DOI:

https://doi.org/10.35335/mandiri.v13i1.304

Keywords:

Algorithma, Data Set of Pest, Diagnosing, Onion

Abstract

The development of an expert system for diagnosing pests and diseases of onion plants is of great importance given the significant role of these crops in the agricultural industry. This research aims to design and develop an expert system that can diagnose various pests and diseases that attack onion plants using the Naive Bayes method. This method was chosen for its ability to classify data based on probability assuming independence between features. This system is designed to assist farmers in identifying pests and diseases more accurately and quickly so that appropriate control measures can be taken immediately.  The training data used in this study included symptoms that often occur in onion plants due to pest or disease attacks. Each symptom is associated with the probability of the appearance of a particular pest or disease. This expert system is designed with an easy-to-use interface for farmers, where they can enter the symptoms observed in plants. Based on these inputs, the system will analyze and provide a diagnosis along with recommendations for control actions that can be taken. The system testing results show that this expert system has good accuracy in diagnosing pests and diseases in onion plants. Thus, this system can be an effective tool for farmers in managing the health of their onion plants. Further research is recommended to improve disease and pest databases and expand the application of these systems to other plant types.

References

Blanquero, R., Carrizosa, E., Ramírez-Cobo, P., & Sillero-Denamiel, M. R. (2021). Variable selection for Naïve Bayes classification. Computers and Operations Research, 135. https://doi.org/10.1016/j.cor.2021.105456

Bowers, A. J., & Zhou, X. (2019). Receiver Operating Characteristic (ROC) Area Under the Curve (AUC): A Diagnostic Measure for Evaluating the Accuracy of Predictors of Education Outcomes. Journal of Education for Students Placed at Risk, 24(1), 20–46. https://doi.org/10.1080/10824669.2018.1523734

Brodzicki, A., Piekarski, M., & Jaworek-Korjakowska, J. (2021). The whale optimization algorithm approach for deep neural networks. Sensors, 21(23). https://doi.org/10.3390/s21238003

Brown, M. E., Mugo, S., Petersen, S., & Klauser, D. (2022). Designing a Pest and Disease Outbreak Warning System for Farmers, Agronomists and Agricultural Input Distributors in East Africa. Insects, 13(3). https://doi.org/10.3390/insects13030232

Charbuty, B., & Abdulazeez, A. (2021). Classification Based on Decision Tree Algorithm for Machine Learning. Journal of Applied Science and Technology Trends, 2(01), 20–28. https://doi.org/10.38094/jastt20165

Chicco, D., & Jurman, G. (2020). The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics, 21(1). https://doi.org/10.1186/s12864-019-6413-7

Demilie, W. B. (2024). Plant disease detection and classification techniques: a comparative study of the performances. Journal of Big Data, 11(1). https://doi.org/10.1186/s40537-023-00863-9

Fitri, I., Teknologi Komunikasi dan Informatika, F., Nasional, U., Manila, S., Minggu, P., Ps Minggu, K., Jakarta Selatan, K., & Khusus Ibu Kota Jakarta, D. (2020). Expert System for Early Detection of Disease in Corn Plant Using Naive Bayes Method (Vol. 3, Issue 36). https://iocscience.org/ejournal/index.php/mantik/index

Foerster, A., & Choi, J. (2016). Recession Forecasting Using Bayesian Classification. The Federal Reserve Bank of Kansas City Research Working Papers. https://doi.org/10.18651/rwp2016-06

Fritz, S., See, L., Bayas, J. C. L., Waldner, F., Jacques, D., Becker-Reshef, I., Whitcraft, A., Baruth, B., Bonifacio, R., Crutchfield, J., Rembold, F., Rojas, O., Schucknecht, A., Van der Velde, M., Verdin, J., Wu, B., Yan, N., You, L., Gilliams, S., … McCallum, I. (2019). A comparison of global agricultural monitoring systems and current gaps. Agricultural Systems, 168, 258–272. https://doi.org/10.1016/j.agsy.2018.05.010

Hasan, R. I., Yusuf, S. M., & Alzubaidi, L. (2020). Review of the state of the art of deep learning for plant diseases: A broad analysis and discussion. In Plants (Vol. 9, Issue 10, pp. 1–25). MDPI AG. https://doi.org/10.3390/plants9101302

Khan, A. I., Quadri, S. M. K., Banday, S., & Shah, J. L. (2022). Deep Diagnosis: A Real-Time Apple Leaf Disease Detection System Based on Deep Learning. SSRN Electronic Journal. https://doi.org/10.2139/ssrn.4019467

Khotimah, B. K., Miswanto, M., & Suprajitno, H. (2020). Optimization of feature selection using genetic algorithm in naïve Bayes classification for incomplete data. International Journal of Intelligent Engineering and Systems, 13(1), 334–343. https://doi.org/10.22266/ijies2020.0229.31

Kotov, R., Jonas, K. G., Carpenter, W. T., Dretsch, M. N., Eaton, N. R., Forbes, M. K., Forbush, K. T., Hobbs, K., Reininghaus, U., Slade, T., South, S. C., Sunderland, M., Waszczuk, M. A., Widiger, T. A., Wright, A. G. C., Zald, D. H., Krueger, R. F., & Watson, D. (2020). Validity and utility of Hierarchical Taxonomy of Psychopathology (HiTOP): I. Psychosis superspectrum. World Psychiatry, 19(2), 151–172. https://doi.org/10.1002/wps.20730

Kurniawan, A., & Pading, J. (n.d.). Naive Bayes Method in Determining Diagnosis of Corn Plant Disease. In Journal of Knowledge Engineering and Artificial Intelligence (JKEAI) (Vol. 1, Issue 1).

Lapajne, J., Knapič, M., & Žibrat, U. (2022). Comparison of Selected Dimensionality Reduction Methods for Detection of Root‐Knot Nematode Infestations in Potato Tubers Using Hyperspectral Imaging. Sensors, 22(1). https://doi.org/10.3390/s22010367

Masri, N., Sultan, Y. A., Akkila, A. N., Almasri, A., Ahmed, A., Mahmoud, A. Y., Zaqout, I., & Abu-Naser, S. S. (2019). Survey of Rule-Based Systems. In International Journal of Academic Information Systems Research (Vol. 3). www.ijeais.org/ijaisr

Prastiyo, S. E., Irham, Hardyastuti, S., & Jamhari. (2020). How agriculture, manufacture, and urbanization induced carbon emission? The case of Indonesia. Environmental Science and Pollution Research, 27(33), 42092–42103. https://doi.org/10.1007/s11356-020-10148-w

Shen, Y., Li, Y., Zheng, H. T., Tang, B., & Yang, M. (2019). Enhancing ontology-driven diagnostic reasoning with a symptom-dependency-aware Naïve Bayes classifier. BMC Bioinformatics, 20(1). https://doi.org/10.1186/s12859-019-2924-0

Soekhai, V., de Bekker-Grob, E. W., Ellis, A. R., & Vass, C. M. (2019). Discrete Choice Experiments in Health Economics: Past, Present and Future. In PharmacoEconomics (Vol. 37, Issue 2, pp. 201–226). Springer International Publishing. https://doi.org/10.1007/s40273-018-0734-2

Song, Y., Wang, J., Ge, Y., & Xu, C. (2020). An optimal parameters-based geographical detector model enhances geographic characteristics of explanatory variables for spatial heterogeneity analysis: cases with different types of spatial data. GIScience and Remote Sensing, 57(5), 593–610. https://doi.org/10.1080/15481603.2020.1760434

Steentjes, M. B. F., Scholten, O. E., & van Kan, J. A. L. (2021). Peeling the onion: Towards a better understanding of botrytis diseases of onion. Phytopathology, 111(3), 464–473. https://doi.org/10.1094/PHYTO-06-20-0258-IA

Tehseen, D., Jilani, A., Sherani, J., Saleem, H., Jilani, M. S., Rashid Khan, A., Jilani, T. A., Saddozai, U. K., Anjum, M. N., Waseem, K., & Ullah, S. (2021). A Comprehensive Review on the Application of Diagnostic Expert Systems in the Field of Agriculture. International Journal on Emerging Technologies, 12(1), 304–316. https://www.researchgate.net/publication/362067712

Wang, R., Liu, L., Xie, C., Yang, P., Li, R., & Zhou, M. (2021). Agripest: A large-scale domain-specific benchmark dataset for practical agricultural pest detection in the wild. Sensors, 21(5), 1–15. https://doi.org/10.3390/s21051601

Wickramasinghe, I., & Kalutarage, H. (2021). Naive Bayes: applications, variations and vulnerabilities: a review of literature with code snippets for implementation. Soft Computing, 25(3), 2277–2293. https://doi.org/10.1007/s00500-020-05297-6

Yağ, İ., & Altan, A. (2022). Artificial Intelligence-Based Robust Hybrid Algorithm Design and Implementation for Real-Time Detection of Plant Diseases in Agricultural Environments. Biology, 11(12). https://doi.org/10.3390/biology11121732

Yang, L., & Shami, A. (2020). On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice. https://doi.org/10.1016/j.neucom.2020.07.061

Zaki, M. A., Narejo, S., Ahsan, M., Zai, S., Anjum, M. R., & Din, N. U. (2021). Image-based Onion Disease (Purple Blotch) Detection using Deep Convolutional Neural Network. International Journal of Advanced Computer Science and Applications, 12(5), 448–458. https://doi.org/10.14569/IJACSA.2021.0120556

Downloads

Published

2024-06-24

How to Cite

Surorejo, S., Albana, M. S., Santoso, N. A., & Gunawan, G. (2024). Expert system for diagnosing pests and diseases of shallot plants with naïve bayes method. Jurnal Mandiri IT, 13(1), 136–142. https://doi.org/10.35335/mandiri.v13i1.304

Most read articles by the same author(s)

1 2 > >>